Brassinosteroids improve the redox state of wheat florets under low-nitrogen stress and alleviate degeneration

IF 4.6 1区 农林科学 Q1 AGRICULTURE, MULTIDISCIPLINARY Journal of Integrative Agriculture Pub Date : 2024-03-07 DOI:10.1016/j.jia.2024.03.035
Zimeng Liang, Juan Li, Jingyi Feng, Zhiyuan Li, Vinay Nangia, Fei Mo, Yang Liu
{"title":"Brassinosteroids improve the redox state of wheat florets under low-nitrogen stress and alleviate degeneration","authors":"Zimeng Liang, Juan Li, Jingyi Feng, Zhiyuan Li, Vinay Nangia, Fei Mo, Yang Liu","doi":"10.1016/j.jia.2024.03.035","DOIUrl":null,"url":null,"abstract":"Reducing nitrogen application rates can mitigate issues such as environmental degradation and resource wastage. However, it can also exacerbate problems such as wheat floret degeneration, leading to reduced yields. Therefore, investigating wheat floret degeneration mechanisms under low nitrogen stress and identifying mitigation measures are conducive to achieving high yields and sustainable development. To investigate the physiological mechanism of low nitrogen stress affecting wheat floret degradation and whether exogenous brassinosteroids can alleviate this stress, three nitrogen application rates (N0, no nitrogen application; N1, 120 kg ha pure nitrogen; and N2, 240 kg ha pure nitrogen) and exogenous spraying experiments (N0CK, no nitrogen with water spraying; N0BR, no nitrogen with 24-epibrassinolide (an active brassinosteroids) spraying; and N1, 120 kg ha pure nitrogen with water spraying) were designed. The results indicated that low nitrogen stress induced a large amount of reactive oxygen species generation. Although wheat spikes synthesized flavonoids to combat oxidative stress, their energy metabolism (glycolysis and tricarboxylic acid cycle) and ascorbate-glutathione cycle were inhibited, keeping reactive oxygen levels elevated within the spike, inducing cell death and exacerbating floret degeneration. Furthermore, brassinosteroids played a role in regulating wheat floret degeneration under low-nitrogen stress. Exogenous foliar spraying of 24-epibrassinolide promoted energy metabolism and the ascorbate-glutathione cycle within the spike, enhancing energy charge and effectively mitigating a portion of reactive oxygen induced by low nitrogen stress, thereby alleviating floret degeneration caused by low nitrogen stress. In summary, low-nitrogen stress disrupts the redox homeostasis of wheat spikes, leading to floret degeneration. Brassinosteroids alleviate floret degeneration by improving the redox state of wheat spikes. This research provides theoretical support for balancing the contradiction between high yields and sustainable development and is beneficial for the application of low nitrogen in production.","PeriodicalId":16305,"journal":{"name":"Journal of Integrative Agriculture","volume":"294 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Integrative Agriculture","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.jia.2024.03.035","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Reducing nitrogen application rates can mitigate issues such as environmental degradation and resource wastage. However, it can also exacerbate problems such as wheat floret degeneration, leading to reduced yields. Therefore, investigating wheat floret degeneration mechanisms under low nitrogen stress and identifying mitigation measures are conducive to achieving high yields and sustainable development. To investigate the physiological mechanism of low nitrogen stress affecting wheat floret degradation and whether exogenous brassinosteroids can alleviate this stress, three nitrogen application rates (N0, no nitrogen application; N1, 120 kg ha pure nitrogen; and N2, 240 kg ha pure nitrogen) and exogenous spraying experiments (N0CK, no nitrogen with water spraying; N0BR, no nitrogen with 24-epibrassinolide (an active brassinosteroids) spraying; and N1, 120 kg ha pure nitrogen with water spraying) were designed. The results indicated that low nitrogen stress induced a large amount of reactive oxygen species generation. Although wheat spikes synthesized flavonoids to combat oxidative stress, their energy metabolism (glycolysis and tricarboxylic acid cycle) and ascorbate-glutathione cycle were inhibited, keeping reactive oxygen levels elevated within the spike, inducing cell death and exacerbating floret degeneration. Furthermore, brassinosteroids played a role in regulating wheat floret degeneration under low-nitrogen stress. Exogenous foliar spraying of 24-epibrassinolide promoted energy metabolism and the ascorbate-glutathione cycle within the spike, enhancing energy charge and effectively mitigating a portion of reactive oxygen induced by low nitrogen stress, thereby alleviating floret degeneration caused by low nitrogen stress. In summary, low-nitrogen stress disrupts the redox homeostasis of wheat spikes, leading to floret degeneration. Brassinosteroids alleviate floret degeneration by improving the redox state of wheat spikes. This research provides theoretical support for balancing the contradiction between high yields and sustainable development and is beneficial for the application of low nitrogen in production.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
芸苔素类固醇改善小麦小花在低氮胁迫下的氧化还原状态并缓解退化现象
降低氮肥施用量可以缓解环境退化和资源浪费等问题。但同时也会加剧小麦小花退化等问题,导致减产。因此,研究小麦在低氮胁迫下小花退化的机理并找出缓解措施,有利于实现高产和可持续发展。为了研究低氮胁迫影响小麦小花退化的生理机制以及外源铜皮素类固醇是否能缓解这种胁迫,研究人员采用了三种施氮量(N0,不施氮;N1,120 kg ha 纯氮;设计了三种施氮量(N0,不施氮;N1,120 千克/公顷纯氮;N2,240 千克/公顷纯氮)和外源喷洒试验(N0CK,不施氮,喷水;N0BR,不施氮,喷洒 24-环黄铜内酯(一种活性黄铜类固醇);N1,120 千克/公顷纯氮,喷水)。结果表明,低氮胁迫诱导产生大量活性氧。虽然小麦穗能合成类黄酮来对抗氧化胁迫,但其能量代谢(糖酵解和三羧酸循环)和抗坏血酸-谷胱甘肽循环受到抑制,使穗内活性氧水平持续升高,诱导细胞死亡,加剧小花退化。此外,黄铜类固醇在低氮胁迫下对小花退化起调节作用。外源叶面喷施 24-epibrassinolide 可促进穗内能量代谢和抗坏血酸-谷胱甘肽循环,增强能量充电,有效缓解低氮胁迫诱导的部分活性氧,从而减轻低氮胁迫引起的小花退化。总之,低氮胁迫破坏了小麦穗的氧化还原平衡,导致小花退化。芸苔素类固醇通过改善小麦穗的氧化还原状态来缓解小花退化。这项研究为平衡高产与可持续发展之间的矛盾提供了理论支持,有利于低氮在生产中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Integrative Agriculture
Journal of Integrative Agriculture AGRICULTURE, MULTIDISCIPLINARY-
CiteScore
7.90
自引率
4.20%
发文量
4817
审稿时长
3-6 weeks
期刊介绍: Journal of Integrative Agriculture publishes manuscripts in the categories of Commentary, Review, Research Article, Letter and Short Communication, focusing on the core subjects: Crop Genetics & Breeding, Germplasm Resources, Physiology, Biochemistry, Cultivation, Tillage, Plant Protection, Animal Science, Veterinary Science, Soil and Fertilization, Irrigation, Plant Nutrition, Agro-Environment & Ecology, Bio-material and Bio-energy, Food Science, Agricultural Economics and Management, Agricultural Information Science.
期刊最新文献
Machine learning ensemble model prediction of northward shift in potato cyst nematodes (Globodera rostochiensis and G. pallida) distribution under climate change conditions Rural labor migration and farmers’ arrangements of rice production systems in Central China: Insight from the intergenerational division of labor The Clausena lansium genome provides new insights into alkaloid diversity and the evolution of the methyltransferase family Streptococcus suis serotype 2 collagenase-like protease promotes meningitis by increasing blood-brain barrier permeability1 Comprehensive analysis of the LysM protein family and functional characterization of the key LysM effector StLysM1, which modulates plant immunity in Setosphaeria turcica1
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1