Alessio Truncali, Tejasvi Laxminarayan, Narayanan Rajagopalan, Claus Erik Weinell, Søren Kiil, Mats Johansson
{"title":"Epoxidized technical Kraft lignin as a particulate resin component for high-performance anticorrosive coatings","authors":"Alessio Truncali, Tejasvi Laxminarayan, Narayanan Rajagopalan, Claus Erik Weinell, Søren Kiil, Mats Johansson","doi":"10.1007/s11998-023-00899-9","DOIUrl":null,"url":null,"abstract":"<div><p>Deterioration of steel infrastructures is often caused by corrosive substances. In harsh conditions, the protection against corrosion is provided by high-performance coatings. The major challenge in this field is to find replacements for the fossil-based resins constituting anticorrosive coatings, due to increasing needs to synthesize new environmentally friendly materials. In this study, softwood Kraft lignin was epoxidized with the aim of obtaining a renewable resin for anticorrosive coatings. The reaction resulted in the formation of heterogeneous, solid, coarse agglomerates. Therefore, the synthetized lignin particles were mechanically ground and sieved to break up the agglomerates and obtain a fine powder. To reduce the use of fossil fuel-based epoxy novolac resins in commercial anticorrosive coatings, a series of formulations were prepared and cured on steel panels varying the content of epoxidized lignin resin. Epoxidized lignin-based coatings used in conjunction with conventional epoxy novolac resin demonstrated improved performance in terms of corrosion protection and adhesion properties, as measured by salt spray exposure and pull-off adhesion test, respectively. In addition, the importance of size fractionation for the homogeneity of the final coating formulations was highlighted. The findings from this study suggest a promising route to develop high-performing lignin-based anticorrosive coatings.</p></div>","PeriodicalId":619,"journal":{"name":"Journal of Coatings Technology and Research","volume":"21 6","pages":"1875 - 1891"},"PeriodicalIF":2.3000,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11998-023-00899-9.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Coatings Technology and Research","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11998-023-00899-9","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Deterioration of steel infrastructures is often caused by corrosive substances. In harsh conditions, the protection against corrosion is provided by high-performance coatings. The major challenge in this field is to find replacements for the fossil-based resins constituting anticorrosive coatings, due to increasing needs to synthesize new environmentally friendly materials. In this study, softwood Kraft lignin was epoxidized with the aim of obtaining a renewable resin for anticorrosive coatings. The reaction resulted in the formation of heterogeneous, solid, coarse agglomerates. Therefore, the synthetized lignin particles were mechanically ground and sieved to break up the agglomerates and obtain a fine powder. To reduce the use of fossil fuel-based epoxy novolac resins in commercial anticorrosive coatings, a series of formulations were prepared and cured on steel panels varying the content of epoxidized lignin resin. Epoxidized lignin-based coatings used in conjunction with conventional epoxy novolac resin demonstrated improved performance in terms of corrosion protection and adhesion properties, as measured by salt spray exposure and pull-off adhesion test, respectively. In addition, the importance of size fractionation for the homogeneity of the final coating formulations was highlighted. The findings from this study suggest a promising route to develop high-performing lignin-based anticorrosive coatings.
期刊介绍:
Journal of Coatings Technology and Research (JCTR) is a forum for the exchange of research, experience, knowledge and ideas among those with a professional interest in the science, technology and manufacture of functional, protective and decorative coatings including paints, inks and related coatings and their raw materials, and similar topics.