A Psycholinguistics-Inspired Method to Counter IP Theft using Fake Documents

IF 2.5 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS ACM Transactions on Management Information Systems Pub Date : 2024-03-06 DOI:10.1145/3651313
Natalia Denisenko, Youzhi Zhang, Chiara Pulice, Shohini Bhattasali, Sushil Jajodia, Philip Resnik, V. S. Subrahmanian
{"title":"A Psycholinguistics-Inspired Method to Counter IP Theft using Fake Documents","authors":"Natalia Denisenko, Youzhi Zhang, Chiara Pulice, Shohini Bhattasali, Sushil Jajodia, Philip Resnik, V. S. Subrahmanian","doi":"10.1145/3651313","DOIUrl":null,"url":null,"abstract":"\n Intellectual property (IP) theft is a growing problem. We build on prior work to deter IP theft by generating\n n\n fake versions of a technical document so that a thief has to expend time and effort in identifying the correct document. Our new\n SbFAKE\n framework proposes for the first time, a novel combination of language processing, optimization, and the psycholinguistic concept of surprisal to generate a set of such fakes. We start by combining psycholinguistic-based surprisal scores and optimization to generate two bilevel surprisal optimization problems (an Explicit one and a simpler Implicit one) whose solutions correspond directly to the desired set of fakes. As bilevel problems are usually hard to solve, we then show that these two bilevel surprisal optimization problems can each be reduced to equivalent surprisal-based linear programs. We performed detailed parameter tuning experiments and identified the best parameters for each of these algorithms. We then tested these two variants of\n SbFAKE\n (with their best parameter settings) against the best performing prior work in the field. Our experiments show that\n SbFAKE\n is able to more effectively generate convincing fakes than past work. In addition, we show that replacing words in an original document with words having similar surprisal scores generates greater levels of deception.\n","PeriodicalId":45274,"journal":{"name":"ACM Transactions on Management Information Systems","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Management Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3651313","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Intellectual property (IP) theft is a growing problem. We build on prior work to deter IP theft by generating n fake versions of a technical document so that a thief has to expend time and effort in identifying the correct document. Our new SbFAKE framework proposes for the first time, a novel combination of language processing, optimization, and the psycholinguistic concept of surprisal to generate a set of such fakes. We start by combining psycholinguistic-based surprisal scores and optimization to generate two bilevel surprisal optimization problems (an Explicit one and a simpler Implicit one) whose solutions correspond directly to the desired set of fakes. As bilevel problems are usually hard to solve, we then show that these two bilevel surprisal optimization problems can each be reduced to equivalent surprisal-based linear programs. We performed detailed parameter tuning experiments and identified the best parameters for each of these algorithms. We then tested these two variants of SbFAKE (with their best parameter settings) against the best performing prior work in the field. Our experiments show that SbFAKE is able to more effectively generate convincing fakes than past work. In addition, we show that replacing words in an original document with words having similar surprisal scores generates greater levels of deception.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
受心理语言学启发的利用假文件打击知识产权盗窃的方法
知识产权(IP)盗窃是一个日益严重的问题。我们在先前工作的基础上,通过生成 n 个伪造版本的技术文档来阻止知识产权盗窃,从而使盗窃者不得不花费时间和精力来识别正确的文档。我们的新 SbFAKE 框架首次将语言处理、优化和心理语言学的 "惊奇"(surisal)概念结合起来,生成了一组这样的赝品。我们首先将基于心理语言学的意外得分与优化相结合,生成两个双层意外优化问题(一个显性问题和一个更简单的隐性问题),其解决方案直接对应于所需的假词集。由于双层问题通常很难解决,我们随后证明这两个双层惊喜优化问题可以分别简化为等价的基于惊喜的线性程序。我们进行了详细的参数调整实验,确定了每种算法的最佳参数。然后,我们将 SbFAKE 的这两个变体(使用其最佳参数设置)与该领域表现最好的先前工作进行了对比测试。实验结果表明,与以往的研究相比,SbFAKE 能够更有效地生成令人信服的赝品。此外,我们还表明,用具有相似惊奇值的词语替换原始文档中的词语,会产生更高水平的欺骗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACM Transactions on Management Information Systems
ACM Transactions on Management Information Systems COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
6.30
自引率
20.00%
发文量
60
期刊最新文献
Interpretable Predictive Models for Healthcare via Rational Multi-Layer Perceptrons Mining Multimorbidity Trajectories and Co-Medication Effects from Patient Data to Predict Post–Hip Fracture Outcomes ShennongMGS: An LLM-based Chinese Medication Guidance System Co-occurrence order-preserving pattern mining with keypoint alignment for time series Estimating Future Financial Development of Urban Areas for Deploying Bank Branches: A Local-Regional Interpretable Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1