ShennongMGS: An LLM-based Chinese Medication Guidance System

IF 2.5 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS ACM Transactions on Management Information Systems Pub Date : 2024-04-17 DOI:10.1145/3658451
Yutao Dou, Yuwei Huang, Xiongjun Zhao, Haitao Zou, Jiandong Shang, Ying Lu, Xiaolin Yang, Jian Xiao, Shaoliang Peng
{"title":"ShennongMGS: An LLM-based Chinese Medication Guidance System","authors":"Yutao Dou, Yuwei Huang, Xiongjun Zhao, Haitao Zou, Jiandong Shang, Ying Lu, Xiaolin Yang, Jian Xiao, Shaoliang Peng","doi":"10.1145/3658451","DOIUrl":null,"url":null,"abstract":"The rapidly evolving field of Large Language Models (LLMs) holds immense promise for healthcare, particularly in medication guidance and adverse drug reaction prediction. Despite their potential, existing LLMs face challenges in dealing with complex polypharmacy scenarios and often grapple with data lag issues. To address these limitations, we introduce an LLM-based Chinese medication guidance system, called ShennongMGS, specifically tailored for robust medication guidance and adverse drug reaction predictions. Our system transforms multi-source heterogeneous medication information into a knowledge graph and employs a two-stage training strategy to construct a specialised LLM (ShennongGPT). This method enables the simulation of professional pharmacists’ decision-making processes and incorporates the capability for knowledge self-updating, thereby significantly enhancing drug safety and the overall quality of medical services. Rigorously evaluated by medical professionals and artificial intelligence experts, our method demonstrates superiority, outperforming existing general and specialised LLMs in performance.","PeriodicalId":45274,"journal":{"name":"ACM Transactions on Management Information Systems","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Management Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3658451","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

The rapidly evolving field of Large Language Models (LLMs) holds immense promise for healthcare, particularly in medication guidance and adverse drug reaction prediction. Despite their potential, existing LLMs face challenges in dealing with complex polypharmacy scenarios and often grapple with data lag issues. To address these limitations, we introduce an LLM-based Chinese medication guidance system, called ShennongMGS, specifically tailored for robust medication guidance and adverse drug reaction predictions. Our system transforms multi-source heterogeneous medication information into a knowledge graph and employs a two-stage training strategy to construct a specialised LLM (ShennongGPT). This method enables the simulation of professional pharmacists’ decision-making processes and incorporates the capability for knowledge self-updating, thereby significantly enhancing drug safety and the overall quality of medical services. Rigorously evaluated by medical professionals and artificial intelligence experts, our method demonstrates superiority, outperforming existing general and specialised LLMs in performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
神农MGS:基于LLM的中医用药指导系统
快速发展的大语言模型(LLMs)领域为医疗保健带来了巨大的前景,尤其是在用药指导和药物不良反应预测方面。尽管潜力巨大,但现有的大型语言模型在处理复杂的多药方情况时仍面临挑战,而且经常会遇到数据滞后的问题。为了解决这些局限性,我们介绍了一种基于 LLM 的中文用药指导系统,名为神农 MGS,专门为稳健的用药指导和药物不良反应预测而量身定制。我们的系统将多源异构用药信息转化为知识图谱,并采用两阶段训练策略构建专门的 LLM(ShennongGPT)。这种方法可以模拟专业药剂师的决策过程,并具有知识自我更新的能力,从而显著提高药品安全和医疗服务的整体质量。经过医学专家和人工智能专家的严格评估,我们的方法显示出优越性,在性能上优于现有的通用和专用 LLM。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACM Transactions on Management Information Systems
ACM Transactions on Management Information Systems COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
6.30
自引率
20.00%
发文量
60
期刊最新文献
Interpretable Predictive Models for Healthcare via Rational Multi-Layer Perceptrons Mining Multimorbidity Trajectories and Co-Medication Effects from Patient Data to Predict Post–Hip Fracture Outcomes ShennongMGS: An LLM-based Chinese Medication Guidance System Co-occurrence order-preserving pattern mining with keypoint alignment for time series Estimating Future Financial Development of Urban Areas for Deploying Bank Branches: A Local-Regional Interpretable Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1