Jiegang Wang, Kerui Li, Chi Zhang, Zhenpo Wang, Yangjie Zhou, Peng Liu
{"title":"Research on Inconsistency Evaluation of Retired Battery Systems in Real-World Vehicles","authors":"Jiegang Wang, Kerui Li, Chi Zhang, Zhenpo Wang, Yangjie Zhou, Peng Liu","doi":"10.3390/batteries10030082","DOIUrl":null,"url":null,"abstract":"Inconsistency is a key factor triggering safety problems in battery packs. The inconsistency evaluation of retired batteries is of great significance to ensure the safe and stable operation of batteries during subsequent gradual use. This paper summaries the commonly used diagnostic methods for battery inconsistency assessment. The local outlier factor (LOF) algorithm and the improved Shannon entropy (ImEn) algorithm are selected for validation based on the individual voltage data from real-world vehicles. Then, a comprehensive inconsistency evaluation strategy for retired batteries with many levels and indicators is established based on the three parameters of LOF, ImEn, and cell voltage range. Finally, the evaluation strategy is validated using two real-world vehicle samples of retired batteries. The results show that the proposed method can achieve the inconsistency evaluation of retired batteries quickly and effectively.","PeriodicalId":502356,"journal":{"name":"Batteries","volume":"20 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Batteries","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/batteries10030082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Inconsistency is a key factor triggering safety problems in battery packs. The inconsistency evaluation of retired batteries is of great significance to ensure the safe and stable operation of batteries during subsequent gradual use. This paper summaries the commonly used diagnostic methods for battery inconsistency assessment. The local outlier factor (LOF) algorithm and the improved Shannon entropy (ImEn) algorithm are selected for validation based on the individual voltage data from real-world vehicles. Then, a comprehensive inconsistency evaluation strategy for retired batteries with many levels and indicators is established based on the three parameters of LOF, ImEn, and cell voltage range. Finally, the evaluation strategy is validated using two real-world vehicle samples of retired batteries. The results show that the proposed method can achieve the inconsistency evaluation of retired batteries quickly and effectively.