Research on SSVEP‐EEG feature enhancement algorithm based on fractional differentiation

Zenghui Li, Wei Wang, Saijie Yuan, Junpeng Pei, Qianqian Yang, Yousong Wang
{"title":"Research on SSVEP‐EEG feature enhancement algorithm based on fractional differentiation","authors":"Zenghui Li, Wei Wang, Saijie Yuan, Junpeng Pei, Qianqian Yang, Yousong Wang","doi":"10.1049/tje2.12363","DOIUrl":null,"url":null,"abstract":"Steady‐state visual evoked potentials (SSVEP), significant in brain‐computer interfaces (BCI) and medical diagnostics, benefit from enhanced signal processing for improved analysis and interpretation. This study introduces a novel enhancement algorithm for SSVEP electroencephalogram (EEG) signals, employing fractional‐order differentiation operators combined with image processing techniques. Utilizing fractional‐order differentiation within a Laplace pyramid framework, the algorithm achieves hierarchical signal enhancement, facilitating detailed feature extraction and emphasizing SSVEP signal characteristics. This innovative approach merges the precision of fractional calculus with the structural benefits of the Laplace pyramid, leading to enhanced signal clarity and feature discrimination. The efficacy of this method was validated using canonical correlation analysis (CCA), filter bank CCA (FBCCA), and task‐related component analysis (TRCA) on a public dataset. Compared to conventional methods, our algorithm not only mitigates trend components in SSVEP signals but also significantly boosts the recognition accuracy of CCA, FBCCA, and TRCA algorithms. Experimental results indicate a marked improvement in recognition precision, underscoring the algorithm's potential to advance SSVEP‐based BCI research.","PeriodicalId":22858,"journal":{"name":"The Journal of Engineering","volume":"56 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/tje2.12363","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Steady‐state visual evoked potentials (SSVEP), significant in brain‐computer interfaces (BCI) and medical diagnostics, benefit from enhanced signal processing for improved analysis and interpretation. This study introduces a novel enhancement algorithm for SSVEP electroencephalogram (EEG) signals, employing fractional‐order differentiation operators combined with image processing techniques. Utilizing fractional‐order differentiation within a Laplace pyramid framework, the algorithm achieves hierarchical signal enhancement, facilitating detailed feature extraction and emphasizing SSVEP signal characteristics. This innovative approach merges the precision of fractional calculus with the structural benefits of the Laplace pyramid, leading to enhanced signal clarity and feature discrimination. The efficacy of this method was validated using canonical correlation analysis (CCA), filter bank CCA (FBCCA), and task‐related component analysis (TRCA) on a public dataset. Compared to conventional methods, our algorithm not only mitigates trend components in SSVEP signals but also significantly boosts the recognition accuracy of CCA, FBCCA, and TRCA algorithms. Experimental results indicate a marked improvement in recognition precision, underscoring the algorithm's potential to advance SSVEP‐based BCI research.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于分数微分的 SSVEP-EEG 特征增强算法研究
稳态视觉诱发电位(SSVEP)在脑机接口(BCI)和医疗诊断中非常重要,可通过增强信号处理来改进分析和解释。本研究采用分数阶微分算子与图像处理技术相结合,为 SSVEP 脑电图(EEG)信号引入了一种新型增强算法。该算法在拉普拉斯金字塔框架内利用分数阶微分,实现了分层信号增强,促进了详细特征提取并突出了 SSVEP 信号特征。这种创新方法融合了分数微积分的精确性和拉普拉斯金字塔的结构优势,从而提高了信号的清晰度和特征识别能力。在一个公开数据集上,使用典型相关分析(CCA)、滤波器组CCA(FBCCA)和任务相关成分分析(TRCA)验证了这种方法的有效性。与传统方法相比,我们的算法不仅能减轻 SSVEP 信号中的趋势成分,还能显著提高 CCA、FBCCA 和 TRCA 算法的识别准确率。实验结果表明,该算法显著提高了识别精确度,凸显了该算法在推进基于 SSVEP 的生物识别研究方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A novel jittered‐carrier phase‐shifted sine pulse width modulation for cascaded H‐bridge converter An improved hybrid network‐on‐chip with flexible topology and frugal routing Magnetic sensors for contactless and non‐intrusive measurement of current in AC power systems Regulation of mixed convective flow in a horizontal channel with multiple slots using P, PI, and PID controllers BrutNet: A novel approach for violence detection and classification using DCNN with GRU
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1