A generalized hypothesis test for community structure in networks

IF 1.4 Q2 SOCIAL SCIENCES, INTERDISCIPLINARY Network Science Pub Date : 2024-03-11 DOI:10.1017/nws.2024.1
Eric Yanchenko, Srijan Sengupta
{"title":"A generalized hypothesis test for community structure in networks","authors":"Eric Yanchenko, Srijan Sengupta","doi":"10.1017/nws.2024.1","DOIUrl":null,"url":null,"abstract":"<p>Researchers theorize that many real-world networks exhibit community structure where within-community edges are more likely than between-community edges. While numerous methods exist to cluster nodes into different communities, less work has addressed this question: given some network, does it exhibit <span>statistically meaningful</span> community structure? We answer this question in a principled manner by framing it as a statistical hypothesis test in terms of a general and model-agnostic community structure parameter. Leveraging this parameter, we propose a simple and interpretable test statistic used to formulate two separate hypothesis testing frameworks. The first is an asymptotic test against a baseline value of the parameter while the second tests against a baseline model using bootstrap-based thresholds. We prove theoretical properties of these tests and demonstrate how the proposed method yields rich insights into real-world datasets.</p>","PeriodicalId":51827,"journal":{"name":"Network Science","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/nws.2024.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SOCIAL SCIENCES, INTERDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Researchers theorize that many real-world networks exhibit community structure where within-community edges are more likely than between-community edges. While numerous methods exist to cluster nodes into different communities, less work has addressed this question: given some network, does it exhibit statistically meaningful community structure? We answer this question in a principled manner by framing it as a statistical hypothesis test in terms of a general and model-agnostic community structure parameter. Leveraging this parameter, we propose a simple and interpretable test statistic used to formulate two separate hypothesis testing frameworks. The first is an asymptotic test against a baseline value of the parameter while the second tests against a baseline model using bootstrap-based thresholds. We prove theoretical properties of these tests and demonstrate how the proposed method yields rich insights into real-world datasets.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
网络中群落结构的广义假设检验
研究人员认为,现实世界中的许多网络都呈现出社群结构,其中社群内边缘比社群间边缘更有可能出现。虽然有许多方法可以将节点聚类到不同的社区中,但较少有人关注这个问题:给定某个网络,它是否表现出有统计意义的社区结构?我们以一种原则性的方式回答了这一问题,即用一个通用的、与模型无关的社群结构参数对其进行统计假设检验。利用这个参数,我们提出了一个简单、可解释的检验统计量,用于制定两个独立的假设检验框架。第一个是针对参数基线值的渐近检验,第二个是利用基于引导的阈值针对基线模型的检验。我们证明了这些检验的理论属性,并展示了所提出的方法如何对现实世界的数据集产生丰富的洞察力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Network Science
Network Science SOCIAL SCIENCES, INTERDISCIPLINARY-
CiteScore
3.50
自引率
5.90%
发文量
24
期刊介绍: Network Science is an important journal for an important discipline - one using the network paradigm, focusing on actors and relational linkages, to inform research, methodology, and applications from many fields across the natural, social, engineering and informational sciences. Given growing understanding of the interconnectedness and globalization of the world, network methods are an increasingly recognized way to research aspects of modern society along with the individuals, organizations, and other actors within it. The discipline is ready for a comprehensive journal, open to papers from all relevant areas. Network Science is a defining work, shaping this discipline. The journal welcomes contributions from researchers in all areas working on network theory, methods, and data.
期刊最新文献
Guiding prevention initiatives by applying network analysis to systems maps of adverse childhood experiences and adolescent suicide The latent cognitive structures of social networks Algorithmic aspects of temporal betweenness When can networks be inferred from observed groups? Generating preferential attachment graphs via a Pólya urn with expanding colors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1