Robert Ahadizad Newport, Sidong Liu, Antonio Di Ieva
{"title":"Analyzing Eye Paths Using Fractals.","authors":"Robert Ahadizad Newport, Sidong Liu, Antonio Di Ieva","doi":"10.1007/978-3-031-47606-8_42","DOIUrl":null,"url":null,"abstract":"<p><p>Visual patterns reflect the anatomical and cognitive background underlying process governing how we perceive information, influenced by stimulus characteristics and our own visual perception. These patterns are both spatially complex and display self-similarity seen in fractal geometry at different scales, making them challenging to measure using the traditional topological dimensions used in Euclidean geometry.However, methods for measuring eye gaze patterns using fractals have shown success in quantifying geometric complexity, matchability, and implementation into machine learning methods. This success is due to the inherent capabilities that fractals possess when reducing dimensionality using Hilbert curves, measuring temporal complexity using the Higuchi fractal dimension (HFD), and determining geometric complexity using the Minkowski-Bouligand dimension.Understanding the many applications of fractals when measuring and analyzing eye gaze patterns can extend the current growing body of knowledge by identifying markers tied to neurological pathology. Additionally, in future work, fractals can facilitate defining imaging modalities in eye tracking diagnostics by exploiting their capability to acquire multiscale information, including complementary functions, structures, and dynamics.</p>","PeriodicalId":7360,"journal":{"name":"Advances in neurobiology","volume":"36 ","pages":"827-848"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in neurobiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-031-47606-8_42","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Neuroscience","Score":null,"Total":0}
引用次数: 0
Abstract
Visual patterns reflect the anatomical and cognitive background underlying process governing how we perceive information, influenced by stimulus characteristics and our own visual perception. These patterns are both spatially complex and display self-similarity seen in fractal geometry at different scales, making them challenging to measure using the traditional topological dimensions used in Euclidean geometry.However, methods for measuring eye gaze patterns using fractals have shown success in quantifying geometric complexity, matchability, and implementation into machine learning methods. This success is due to the inherent capabilities that fractals possess when reducing dimensionality using Hilbert curves, measuring temporal complexity using the Higuchi fractal dimension (HFD), and determining geometric complexity using the Minkowski-Bouligand dimension.Understanding the many applications of fractals when measuring and analyzing eye gaze patterns can extend the current growing body of knowledge by identifying markers tied to neurological pathology. Additionally, in future work, fractals can facilitate defining imaging modalities in eye tracking diagnostics by exploiting their capability to acquire multiscale information, including complementary functions, structures, and dynamics.