EEG Complexity Analysis of Brain States, Tasks and ASD Risk.

Q3 Neuroscience Advances in neurobiology Pub Date : 2024-01-01 DOI:10.1007/978-3-031-47606-8_37
Stephen S Wolfson, Ian Kirk, Karen Waldie, Chris King
{"title":"EEG Complexity Analysis of Brain States, Tasks and ASD Risk.","authors":"Stephen S Wolfson, Ian Kirk, Karen Waldie, Chris King","doi":"10.1007/978-3-031-47606-8_37","DOIUrl":null,"url":null,"abstract":"<p><p>Autism spectrum disorder is an increasingly prevalent and debilitating neurodevelopmental condition and an electroencephalogram (EEG) diagnostic challenge. Despite large amounts of electrophysiological research over many decades, an EEG biomarker for autism spectrum disorder (ASD) has not been found. We hypothesized that reductions in complex dynamical system behaviour in the human central nervous system as part of the macroscale neuronal function during cognitive processes might be detectable in whole EEG for higher-risk ASD adults. In three studies, we compared the medians of correlation dimension, largest Lyapunov exponent, Higuchi's fractal dimension, multiscale entropy, multifractal detrended fluctuation analysis and Kolmogorov complexity during resting, cognitive and social skill tasks in 20 EEG channels of 39 adults over a range of ASD risk. We found heterogeneous complexity distribution with clusters of hierarchical sequences pointing to potential cognitive processing differences, but no clear distinction based on ASD risk. We suggest that there is indication of statistically significant differences between complexity measures of brain states and tasks. Though replication of our studies is needed with a larger sample, we believe that our electrophysiological and analytic approach has potential as a biomarker for earlier ASD diagnosis.</p>","PeriodicalId":7360,"journal":{"name":"Advances in neurobiology","volume":"36 ","pages":"733-759"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in neurobiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-031-47606-8_37","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Neuroscience","Score":null,"Total":0}
引用次数: 0

Abstract

Autism spectrum disorder is an increasingly prevalent and debilitating neurodevelopmental condition and an electroencephalogram (EEG) diagnostic challenge. Despite large amounts of electrophysiological research over many decades, an EEG biomarker for autism spectrum disorder (ASD) has not been found. We hypothesized that reductions in complex dynamical system behaviour in the human central nervous system as part of the macroscale neuronal function during cognitive processes might be detectable in whole EEG for higher-risk ASD adults. In three studies, we compared the medians of correlation dimension, largest Lyapunov exponent, Higuchi's fractal dimension, multiscale entropy, multifractal detrended fluctuation analysis and Kolmogorov complexity during resting, cognitive and social skill tasks in 20 EEG channels of 39 adults over a range of ASD risk. We found heterogeneous complexity distribution with clusters of hierarchical sequences pointing to potential cognitive processing differences, but no clear distinction based on ASD risk. We suggest that there is indication of statistically significant differences between complexity measures of brain states and tasks. Though replication of our studies is needed with a larger sample, we believe that our electrophysiological and analytic approach has potential as a biomarker for earlier ASD diagnosis.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大脑状态、任务和自闭症风险的脑电图复杂性分析。
自闭症谱系障碍是一种发病率越来越高、使人衰弱的神经发育疾病,也是脑电图(EEG)诊断的难题。尽管几十年来进行了大量的电生理学研究,但仍未找到自闭症谱系障碍(ASD)的脑电图生物标志物。我们假设,作为认知过程中神经元宏观功能的一部分,人类中枢神经系统复杂动态系统行为的减少可能会在高风险 ASD 成人的整个脑电图中检测到。在三项研究中,我们比较了 39 名患有 ASD 的成人的 20 个脑电图通道在静息、认知和社交技能任务中的相关维度、最大李普诺夫指数、樋口分形维度、多尺度熵、多分形去趋势波动分析和科尔莫戈罗夫复杂性的中位数。我们发现复杂性分布不均,分层序列集群显示了潜在的认知处理差异,但没有根据自闭症风险进行明确区分。我们认为,大脑状态和任务的复杂性测量之间存在统计学意义上的显著差异。虽然我们的研究需要更大样本的重复,但我们相信,我们的电生理和分析方法有可能成为早期诊断 ASD 的生物标志物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advances in neurobiology
Advances in neurobiology Neuroscience-Neurology
CiteScore
2.80
自引率
0.00%
发文量
0
期刊最新文献
A Self-Similarity Logic May Shape the Organization of the Nervous System. Advances in Understanding Fractals in Affective and Anxiety Disorders. Analyzing Eye Paths Using Fractals. Box-Counting Fractal Analysis: A Primer for the Clinician. Clinical Sensitivity of Fractal Neurodynamics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1