Soft octopus-inspired suction cups using dielectric elastomer actuators with sensing capabilities.

IF 3.1 3区 计算机科学 Q1 ENGINEERING, MULTIDISCIPLINARY Bioinspiration & Biomimetics Pub Date : 2024-04-03 DOI:10.1088/1748-3190/ad3266
Armin Jamali, Dushyant Bhagwan Mishra, Frank Goldschmidtboeing, Peter Woias
{"title":"Soft octopus-inspired suction cups using dielectric elastomer actuators with sensing capabilities.","authors":"Armin Jamali, Dushyant Bhagwan Mishra, Frank Goldschmidtboeing, Peter Woias","doi":"10.1088/1748-3190/ad3266","DOIUrl":null,"url":null,"abstract":"<p><p>Bioinspired and biomimetic soft grippers are rapidly growing fields. They represent an advancement in soft robotics as they emulate the adaptability and flexibility of biological end effectors. A prominent example of a gripping mechanism found in nature is the octopus tentacle, enabling the animal to attach to rough and irregular surfaces. Inspired by the structure and morphology of the tentacles, this study introduces a novel design, fabrication, and characterization method of dielectric elastomer suction cups. To grasp objects, the developed suction cups perform out-of-plane deflections as the suction mechanism. Their attachment mechanism resembles that of their biological counterparts, as they do not require a pre-stretch over a rigid frame or any external hydraulic or pneumatic support to form and hold the dome structure of the suction cups. The realized artificial suction cups demonstrate the capability of generating a negative pressure up to 1.3 kPa in air and grasping and lifting objects with a maximum 58 g weight under an actuation voltage of 6 kV. They also have sensing capabilities to determine whether the grasping was successful without the need of lifting the objects.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinspiration & Biomimetics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1088/1748-3190/ad3266","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Bioinspired and biomimetic soft grippers are rapidly growing fields. They represent an advancement in soft robotics as they emulate the adaptability and flexibility of biological end effectors. A prominent example of a gripping mechanism found in nature is the octopus tentacle, enabling the animal to attach to rough and irregular surfaces. Inspired by the structure and morphology of the tentacles, this study introduces a novel design, fabrication, and characterization method of dielectric elastomer suction cups. To grasp objects, the developed suction cups perform out-of-plane deflections as the suction mechanism. Their attachment mechanism resembles that of their biological counterparts, as they do not require a pre-stretch over a rigid frame or any external hydraulic or pneumatic support to form and hold the dome structure of the suction cups. The realized artificial suction cups demonstrate the capability of generating a negative pressure up to 1.3 kPa in air and grasping and lifting objects with a maximum 58 g weight under an actuation voltage of 6 kV. They also have sensing capabilities to determine whether the grasping was successful without the need of lifting the objects.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
受章鱼启发而设计的软吸盘,使用具有传感功能的介电弹性体致动器。
生物启发和仿生软抓手是一个快速发展的领域。它们模仿生物末端效应器的适应性和灵活性,代表了软机器人技术的进步。章鱼触手是自然界中抓取机制的一个突出例子,它使动物能够附着在粗糙和不规则的表面上。受章鱼触手结构和形态的启发,本研究介绍了一种新型介电弹性体吸盘的设计、制造和表征方法。为了抓住物体,所开发的吸盘以平面外偏转作为吸附机制。它们的吸附机制类似于生物吸盘,因为它们不需要在刚性框架上进行预拉伸,也不需要任何外部液压或气动支持来形成和固定吸盘的圆顶结构。已实现的人造吸盘能够在空气中产生高达 1.3 千帕的负压,并能在 6 千伏的驱动电压下抓取和举起最大重量为 58 克的物体。它们还具有传感功能,无需提起物体即可确定抓取是否成功。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Bioinspiration & Biomimetics
Bioinspiration & Biomimetics 工程技术-材料科学:生物材料
CiteScore
5.90
自引率
14.70%
发文量
132
审稿时长
3 months
期刊介绍: Bioinspiration & Biomimetics publishes research involving the study and distillation of principles and functions found in biological systems that have been developed through evolution, and application of this knowledge to produce novel and exciting basic technologies and new approaches to solving scientific problems. It provides a forum for interdisciplinary research which acts as a pipeline, facilitating the two-way flow of ideas and understanding between the extensive bodies of knowledge of the different disciplines. It has two principal aims: to draw on biology to enrich engineering and to draw from engineering to enrich biology. The journal aims to include input from across all intersecting areas of both fields. In biology, this would include work in all fields from physiology to ecology, with either zoological or botanical focus. In engineering, this would include both design and practical application of biomimetic or bioinspired devices and systems. Typical areas of interest include: Systems, designs and structure Communication and navigation Cooperative behaviour Self-organizing biological systems Self-healing and self-assembly Aerial locomotion and aerospace applications of biomimetics Biomorphic surface and subsurface systems Marine dynamics: swimming and underwater dynamics Applications of novel materials Biomechanics; including movement, locomotion, fluidics Cellular behaviour Sensors and senses Biomimetic or bioinformed approaches to geological exploration.
期刊最新文献
Enhancing postural stability in musculoskeletal quadrupedal locomotion through tension feedback for CPG-based controller. One-shot manufacturable soft-robotic pump inspired by embryonic tubular heart. Role of viscoelasticity in the adhesion of mushroom-shaped pillars. A biomimetic fruit fly robot for studying the neuromechanics of legged locomotion. Encoding spatiotemporal asymmetry in artificial cilia with a ctenophore-inspired soft-robotic platform.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1