{"title":"Design and implementation of an independent-drive bionic dragonfly robot.","authors":"Danguo Cheng, Zhong Yang, Guojun Chen, Hongyu Xu, Liao Luwei, Wei Chen","doi":"10.1088/1748-3190/adb5e4","DOIUrl":null,"url":null,"abstract":"<p><p>Bionic flapping wing robots achieve flight by imitating animal flapping wings, which are safe, flexible, and efficient. Their practicality and human-machine symbiosis in narrow and complex environments are better than those of traditional fixed-wing or multirotor drones, which shows a broader application prospect. By systematic and biomimetic methods, a bionic dragonfly robot with four independent drive flapping wings, called DFly-I, was designed. First of all, the mechanical structure of the robot was introduced, especially the fluttering structure and the wing structure. Then, a new motion controller based on multi-channel field-oriented control (FOC) is proposed for its motion mechanism, which relies on four sets of brushless DC motors (BLDCs) based on FOC control and four sets of servos to achieve independent control of the flapping speed, rhythm, and angle of four flapping wings. In addition, the system model is analyzed, and on this basis, the robot motion and posture control are realized by an proportional-integral-derivative and active disturbance rejection (PID-ADRC) based controller. Lastly, a physical prototype was made, and the system was feasible through flight experiments in indoor venues.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinspiration & Biomimetics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1088/1748-3190/adb5e4","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Bionic flapping wing robots achieve flight by imitating animal flapping wings, which are safe, flexible, and efficient. Their practicality and human-machine symbiosis in narrow and complex environments are better than those of traditional fixed-wing or multirotor drones, which shows a broader application prospect. By systematic and biomimetic methods, a bionic dragonfly robot with four independent drive flapping wings, called DFly-I, was designed. First of all, the mechanical structure of the robot was introduced, especially the fluttering structure and the wing structure. Then, a new motion controller based on multi-channel field-oriented control (FOC) is proposed for its motion mechanism, which relies on four sets of brushless DC motors (BLDCs) based on FOC control and four sets of servos to achieve independent control of the flapping speed, rhythm, and angle of four flapping wings. In addition, the system model is analyzed, and on this basis, the robot motion and posture control are realized by an proportional-integral-derivative and active disturbance rejection (PID-ADRC) based controller. Lastly, a physical prototype was made, and the system was feasible through flight experiments in indoor venues.
期刊介绍:
Bioinspiration & Biomimetics publishes research involving the study and distillation of principles and functions found in biological systems that have been developed through evolution, and application of this knowledge to produce novel and exciting basic technologies and new approaches to solving scientific problems. It provides a forum for interdisciplinary research which acts as a pipeline, facilitating the two-way flow of ideas and understanding between the extensive bodies of knowledge of the different disciplines. It has two principal aims: to draw on biology to enrich engineering and to draw from engineering to enrich biology.
The journal aims to include input from across all intersecting areas of both fields. In biology, this would include work in all fields from physiology to ecology, with either zoological or botanical focus. In engineering, this would include both design and practical application of biomimetic or bioinspired devices and systems. Typical areas of interest include:
Systems, designs and structure
Communication and navigation
Cooperative behaviour
Self-organizing biological systems
Self-healing and self-assembly
Aerial locomotion and aerospace applications of biomimetics
Biomorphic surface and subsurface systems
Marine dynamics: swimming and underwater dynamics
Applications of novel materials
Biomechanics; including movement, locomotion, fluidics
Cellular behaviour
Sensors and senses
Biomimetic or bioinformed approaches to geological exploration.