Adversarial Monte Carlo Meta-Learning of Optimal Prediction Procedures.

IF 4.3 3区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS Journal of Machine Learning Research Pub Date : 2021-01-01
Alex Luedtke, Incheoul Chung, Oleg Sofrygin
{"title":"Adversarial Monte Carlo Meta-Learning of Optimal Prediction Procedures.","authors":"Alex Luedtke, Incheoul Chung, Oleg Sofrygin","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>We frame the meta-learning of prediction procedures as a search for an optimal strategy in a two-player game. In this game, Nature selects a prior over distributions that generate labeled data consisting of features and an associated outcome, and the Predictor observes data sampled from a distribution drawn from this prior. The Predictor's objective is to learn a function that maps from a new feature to an estimate of the associated outcome. We establish that, under reasonable conditions, the Predictor has an optimal strategy that is equivariant to shifts and rescalings of the outcome and is invariant to permutations of the observations and to shifts, rescalings, and permutations of the features. We introduce a neural network architecture that satisfies these properties. The proposed strategy performs favorably compared to standard practice in both parametric and nonparametric experiments.</p>","PeriodicalId":50161,"journal":{"name":"Journal of Machine Learning Research","volume":"22 ","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10928557/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Machine Learning Research","FirstCategoryId":"94","ListUrlMain":"","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

We frame the meta-learning of prediction procedures as a search for an optimal strategy in a two-player game. In this game, Nature selects a prior over distributions that generate labeled data consisting of features and an associated outcome, and the Predictor observes data sampled from a distribution drawn from this prior. The Predictor's objective is to learn a function that maps from a new feature to an estimate of the associated outcome. We establish that, under reasonable conditions, the Predictor has an optimal strategy that is equivariant to shifts and rescalings of the outcome and is invariant to permutations of the observations and to shifts, rescalings, and permutations of the features. We introduce a neural network architecture that satisfies these properties. The proposed strategy performs favorably compared to standard practice in both parametric and nonparametric experiments.

分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
最佳预测程序的对抗性蒙特卡罗元学习。
我们将预测程序的元学习设计为在双人游戏中寻找最佳策略。在这场博弈中,"自然 "会对产生由特征和相关结果组成的标记数据的分布选择一个先验,而 "预测者 "则观察从该先验的分布中采样的数据。预测者的目标是学习一个从新特征映射到相关结果估计值的函数。我们发现,在合理的条件下,预测器有一个最优策略,该策略对结果的移动和重定向具有等变性,并且对观察结果的排列以及特征的移动、重定向和排列具有不变性。我们引入了一种满足这些特性的神经网络架构。在参数和非参数实验中,与标准实践相比,所提出的策略都表现出色。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Machine Learning Research
Journal of Machine Learning Research 工程技术-计算机:人工智能
CiteScore
18.80
自引率
0.00%
发文量
2
审稿时长
3 months
期刊介绍: The Journal of Machine Learning Research (JMLR) provides an international forum for the electronic and paper publication of high-quality scholarly articles in all areas of machine learning. All published papers are freely available online. JMLR has a commitment to rigorous yet rapid reviewing. JMLR seeks previously unpublished papers on machine learning that contain: new principled algorithms with sound empirical validation, and with justification of theoretical, psychological, or biological nature; experimental and/or theoretical studies yielding new insight into the design and behavior of learning in intelligent systems; accounts of applications of existing techniques that shed light on the strengths and weaknesses of the methods; formalization of new learning tasks (e.g., in the context of new applications) and of methods for assessing performance on those tasks; development of new analytical frameworks that advance theoretical studies of practical learning methods; computational models of data from natural learning systems at the behavioral or neural level; or extremely well-written surveys of existing work.
期刊最新文献
Convergence for nonconvex ADMM, with applications to CT imaging. Effect-Invariant Mechanisms for Policy Generalization. Nonparametric Regression for 3D Point Cloud Learning. Batch Normalization Preconditioning for Stochastic Gradient Langevin Dynamics Why Self-Attention is Natural for Sequence-to-Sequence Problems? A Perspective from Symmetries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1