Huaiguang Yang , Chu Zhang , Liang Ding , Qingqing Wei , Haibo Gao , Guangjun Liu , Liyuan Ge , Zongquan Deng
{"title":"Comparative study of terramechanics properties of spherical and cylindrical feet for planetary legged robots on deformable terrain","authors":"Huaiguang Yang , Chu Zhang , Liang Ding , Qingqing Wei , Haibo Gao , Guangjun Liu , Liyuan Ge , Zongquan Deng","doi":"10.1016/j.jterra.2024.100968","DOIUrl":null,"url":null,"abstract":"<div><p>Legged robots exhibit superior adaptability to complex extraterrestrial environments compared to wheeled mobile robots. However, legged robots employed in planetary exploration face challenges in dealing with soft terrains. This paper focuses on investigating the issues of large foot sinkage and slip encountered by legged robots on soft terrain. Extensive experiments on quasi-static loading, loading with impact and tangential force have been carried out for both spherical and cylindrical feet. The variations in normal force, tangential force, and sinkage are meticulously recorded and analyzed. Foot-terrain interaction mechanics models are established to address scenarios involving substantial sinkage and sliding sinkage, leveraging the stress distribution characteristics of deformable soil. Accurate models are obtained through parameter identification utilizing experimental data, which can aid in the foot design of legged robots intended for planetary exploration. Based on the developed models and experimental data, a design optimization scheme for the coronal foot is proposed, leading to performance enhancements that are validated through experimental verification.</p></div>","PeriodicalId":50023,"journal":{"name":"Journal of Terramechanics","volume":"113 ","pages":"Article 100968"},"PeriodicalIF":2.4000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Terramechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022489824000107","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Legged robots exhibit superior adaptability to complex extraterrestrial environments compared to wheeled mobile robots. However, legged robots employed in planetary exploration face challenges in dealing with soft terrains. This paper focuses on investigating the issues of large foot sinkage and slip encountered by legged robots on soft terrain. Extensive experiments on quasi-static loading, loading with impact and tangential force have been carried out for both spherical and cylindrical feet. The variations in normal force, tangential force, and sinkage are meticulously recorded and analyzed. Foot-terrain interaction mechanics models are established to address scenarios involving substantial sinkage and sliding sinkage, leveraging the stress distribution characteristics of deformable soil. Accurate models are obtained through parameter identification utilizing experimental data, which can aid in the foot design of legged robots intended for planetary exploration. Based on the developed models and experimental data, a design optimization scheme for the coronal foot is proposed, leading to performance enhancements that are validated through experimental verification.
期刊介绍:
The Journal of Terramechanics is primarily devoted to scientific articles concerned with research, design, and equipment utilization in the field of terramechanics.
The Journal of Terramechanics is the leading international journal serving the multidisciplinary global off-road vehicle and soil working machinery industries, and related user community, governmental agencies and universities.
The Journal of Terramechanics provides a forum for those involved in research, development, design, innovation, testing, application and utilization of off-road vehicles and soil working machinery, and their sub-systems and components. The Journal presents a cross-section of technical papers, reviews, comments and discussions, and serves as a medium for recording recent progress in the field.