{"title":"Passive daytime radiative cooling materials toward real-world applications","authors":"Cunhai Wang , Hao Chen , Fuqiang Wang","doi":"10.1016/j.pmatsci.2024.101276","DOIUrl":null,"url":null,"abstract":"<div><p>Passive daytime radiative cooling (PDRC) is an emerging cooling technique of a sunshine-exposed terrestrial surface by dissipating excessive heat into the deep-cold outer space. It is a passive technique without fuel consumption and paves a promising way to overcome the issues of energy shortage and environmental pollution at the global scale. In the contemporary era, highly developed nanophotonic engineering allows spectrally precise emissivity/reflectivity of a thermal surface, significantly improving a PDRC structure's cooling power. Furthermore, scalable manufacturing techniques have also been successfully developed for PDRC material preparation at affordable costs, promoting their practical implementations. However, a comprehensive review of PDRC materials for real-world applications is still lacking. This work begins with the fundamentals of PDRC, continues with the power enhancement and scaling up process of PDRC materials, boosts with the advances of three typical types of scalable PDRC materials, including films, textiles, and bulk materials, and ends with an outlook that addresses the limitations and challenges on PDRC materials for extensive real-world applications. This review can help scientists and engineers carry forward the design and implementation of PDRC materials, promote the mitigation of global issues such as scorching and water shortage, and make the planet healthier and more comfortable.</p></div>","PeriodicalId":411,"journal":{"name":"Progress in Materials Science","volume":"144 ","pages":"Article 101276"},"PeriodicalIF":33.6000,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079642524000458","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Passive daytime radiative cooling (PDRC) is an emerging cooling technique of a sunshine-exposed terrestrial surface by dissipating excessive heat into the deep-cold outer space. It is a passive technique without fuel consumption and paves a promising way to overcome the issues of energy shortage and environmental pollution at the global scale. In the contemporary era, highly developed nanophotonic engineering allows spectrally precise emissivity/reflectivity of a thermal surface, significantly improving a PDRC structure's cooling power. Furthermore, scalable manufacturing techniques have also been successfully developed for PDRC material preparation at affordable costs, promoting their practical implementations. However, a comprehensive review of PDRC materials for real-world applications is still lacking. This work begins with the fundamentals of PDRC, continues with the power enhancement and scaling up process of PDRC materials, boosts with the advances of three typical types of scalable PDRC materials, including films, textiles, and bulk materials, and ends with an outlook that addresses the limitations and challenges on PDRC materials for extensive real-world applications. This review can help scientists and engineers carry forward the design and implementation of PDRC materials, promote the mitigation of global issues such as scorching and water shortage, and make the planet healthier and more comfortable.
期刊介绍:
Progress in Materials Science is a journal that publishes authoritative and critical reviews of recent advances in the science of materials. The focus of the journal is on the fundamental aspects of materials science, particularly those concerning microstructure and nanostructure and their relationship to properties. Emphasis is also placed on the thermodynamics, kinetics, mechanisms, and modeling of processes within materials, as well as the understanding of material properties in engineering and other applications.
The journal welcomes reviews from authors who are active leaders in the field of materials science and have a strong scientific track record. Materials of interest include metallic, ceramic, polymeric, biological, medical, and composite materials in all forms.
Manuscripts submitted to Progress in Materials Science are generally longer than those found in other research journals. While the focus is on invited reviews, interested authors may submit a proposal for consideration. Non-invited manuscripts are required to be preceded by the submission of a proposal. Authors publishing in Progress in Materials Science have the option to publish their research via subscription or open access. Open access publication requires the author or research funder to meet a publication fee (APC).
Abstracting and indexing services for Progress in Materials Science include Current Contents, Science Citation Index Expanded, Materials Science Citation Index, Chemical Abstracts, Engineering Index, INSPEC, and Scopus.