{"title":"On the optimality of quantum circuit initial mapping using reinforcement learning","authors":"Norhan Elsayed Amer, Walid Gomaa, Keiji Kimura, Kazunori Ueda, Ahmed El-Mahdy","doi":"10.1140/epjqt/s40507-024-00225-1","DOIUrl":null,"url":null,"abstract":"<div><p>Quantum circuit optimization is an inevitable task with the current noisy quantum backends. This task is considered non-trivial due to the varying circuits’ complexities in addition to hardware-specific noise, topology, and limited connectivity. The currently available methods either rely on heuristics for circuit optimization tasks or reinforcement learning with complex unscalable neural networks such as transformers. In this paper, we are concerned with optimizing the initial logical-to-physical mapping selection. Specifically, we investigate whether a reinforcement learning agent with simple scalable neural network is capable of finding a near-optimal logical-to-physical mapping, that would decrease as much as possible additional CNOT gates, only from a fixed-length feature vector. To answer this question, we train a Maskable Proximal Policy Optimization agent to progressively take steps towards a near-optimal logical-to-physical mapping on a 20-qubit hardware architecture. Our results show that our agent coupled with a simple routing evaluation is capable of outperforming other available reinforcement learning and heuristics approaches on 12 out of 19 test benchmarks, achieving geometric mean improvements of 2.2% and 15% over the best available related work and two heuristics approaches, respectively. Additionally, our neural network model scales linearly as the number of qubits increases.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"11 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-024-00225-1","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Quantum Technology","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1140/epjqt/s40507-024-00225-1","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Quantum circuit optimization is an inevitable task with the current noisy quantum backends. This task is considered non-trivial due to the varying circuits’ complexities in addition to hardware-specific noise, topology, and limited connectivity. The currently available methods either rely on heuristics for circuit optimization tasks or reinforcement learning with complex unscalable neural networks such as transformers. In this paper, we are concerned with optimizing the initial logical-to-physical mapping selection. Specifically, we investigate whether a reinforcement learning agent with simple scalable neural network is capable of finding a near-optimal logical-to-physical mapping, that would decrease as much as possible additional CNOT gates, only from a fixed-length feature vector. To answer this question, we train a Maskable Proximal Policy Optimization agent to progressively take steps towards a near-optimal logical-to-physical mapping on a 20-qubit hardware architecture. Our results show that our agent coupled with a simple routing evaluation is capable of outperforming other available reinforcement learning and heuristics approaches on 12 out of 19 test benchmarks, achieving geometric mean improvements of 2.2% and 15% over the best available related work and two heuristics approaches, respectively. Additionally, our neural network model scales linearly as the number of qubits increases.
期刊介绍:
Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics.
EPJ Quantum Technology covers theoretical and experimental advances in subjects including but not limited to the following:
Quantum measurement, metrology and lithography
Quantum complex systems, networks and cellular automata
Quantum electromechanical systems
Quantum optomechanical systems
Quantum machines, engineering and nanorobotics
Quantum control theory
Quantum information, communication and computation
Quantum thermodynamics
Quantum metamaterials
The effect of Casimir forces on micro- and nano-electromechanical systems
Quantum biology
Quantum sensing
Hybrid quantum systems
Quantum simulations.