Phase autoencoder for limit-cycle oscillators

Koichiro Yawata, Kai Fukami, Kunihiko Taira, Hiroya Nakao
{"title":"Phase autoencoder for limit-cycle oscillators","authors":"Koichiro Yawata, Kai Fukami, Kunihiko Taira, Hiroya Nakao","doi":"arxiv-2403.06992","DOIUrl":null,"url":null,"abstract":"We present a phase autoencoder that encodes the asymptotic phase of a\nlimit-cycle oscillator, a fundamental quantity characterizing its\nsynchronization dynamics. This autoencoder is trained in such a way that its\nlatent variables directly represent the asymptotic phase of the oscillator. The\ntrained autoencoder can perform two functions without relying on the\nmathematical model of the oscillator: first, it can evaluate the asymptotic\nphase and phase sensitivity function of the oscillator; second, it can\nreconstruct the oscillator state on the limit cycle in the original space from\nthe phase value as an input. Using several examples of limit-cycle oscillators,\nwe demonstrate that the asymptotic phase and phase sensitivity function can be\nestimated only from time-series data by the trained autoencoder. We also\npresent a simple method for globally synchronizing two oscillators as an\napplication of the trained autoencoder.","PeriodicalId":501305,"journal":{"name":"arXiv - PHYS - Adaptation and Self-Organizing Systems","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Adaptation and Self-Organizing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2403.06992","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present a phase autoencoder that encodes the asymptotic phase of a limit-cycle oscillator, a fundamental quantity characterizing its synchronization dynamics. This autoencoder is trained in such a way that its latent variables directly represent the asymptotic phase of the oscillator. The trained autoencoder can perform two functions without relying on the mathematical model of the oscillator: first, it can evaluate the asymptotic phase and phase sensitivity function of the oscillator; second, it can reconstruct the oscillator state on the limit cycle in the original space from the phase value as an input. Using several examples of limit-cycle oscillators, we demonstrate that the asymptotic phase and phase sensitivity function can be estimated only from time-series data by the trained autoencoder. We also present a simple method for globally synchronizing two oscillators as an application of the trained autoencoder.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于极限周期振荡器的相位自动编码器
我们提出了一种相位自动编码器,它可以编码极限周期振荡器的渐近相位,这是表征其同步动力学的一个基本量。这种自动编码器的训练方式使其恒定变量直接代表振荡器的渐近相位。训练好的自动编码器无需依赖振荡器的数学模型就能执行两个功能:首先,它能评估振荡器的渐近相位和相位灵敏度函数;其次,它能根据相位值作为输入,在原始空间中重建极限周期上的振荡器状态。我们用几个极限周期振荡器的例子证明,只有经过训练的自动编码器才能从时间序列数据中估计出渐近相位和相位灵敏度函数。我们还介绍了一种应用训练有素的自动编码器实现两个振荡器全局同步的简单方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Expected and unexpected routes to synchronization in a system of swarmalators Synchronization cluster bursting in adaptive oscillators networks The forced one-dimensional swarmalator model Periodic systems have new classes of synchronization stability Reduced-order adaptive synchronization in a chaotic neural network with parameter mismatch: A dynamical system vs. machine learning approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1