{"title":"Metabolic coupling between glutamate and N-acetylaspartate in the human brain.","authors":"Sungtak Hong, Jyoti Singh Tomar, Jun Shen","doi":"10.1177/0271678X241239783","DOIUrl":null,"url":null,"abstract":"<p><p>A metabolic coupling between glutamate and N-acetylaspartate measured by in vivo magnetic resonance spectroscopy has been recently reported in the literature with inconsistent findings. In this study, confounders originating from Pearson's spurious correlation of ratios and spectral correlation due to overlapping magnetic resonance spectroscopy signals of glutamate and N-acetylaspartate were practically eliminated to facilitate the determination of any metabolic link between glutamate and N-acetylaspartate in the human brain using in vivo magnetic resonance spectroscopy. In both occipital and medial prefrontal cortices of healthy individuals, correlations between glutamate and N-acetylaspartate were found to be insignificant. Our results do not lend support to a recent hypothesis that N-acetylaspartate serves as a significant reservoir for the rapid replenishment of glutamate during signaling or stress.</p>","PeriodicalId":15325,"journal":{"name":"Journal of Cerebral Blood Flow and Metabolism","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11418672/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cerebral Blood Flow and Metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/0271678X241239783","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/14 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
A metabolic coupling between glutamate and N-acetylaspartate measured by in vivo magnetic resonance spectroscopy has been recently reported in the literature with inconsistent findings. In this study, confounders originating from Pearson's spurious correlation of ratios and spectral correlation due to overlapping magnetic resonance spectroscopy signals of glutamate and N-acetylaspartate were practically eliminated to facilitate the determination of any metabolic link between glutamate and N-acetylaspartate in the human brain using in vivo magnetic resonance spectroscopy. In both occipital and medial prefrontal cortices of healthy individuals, correlations between glutamate and N-acetylaspartate were found to be insignificant. Our results do not lend support to a recent hypothesis that N-acetylaspartate serves as a significant reservoir for the rapid replenishment of glutamate during signaling or stress.
期刊介绍:
JCBFM is the official journal of the International Society for Cerebral Blood Flow & Metabolism, which is committed to publishing high quality, independently peer-reviewed research and review material. JCBFM stands at the interface between basic and clinical neurovascular research, and features timely and relevant research highlighting experimental, theoretical, and clinical aspects of brain circulation, metabolism and imaging. The journal is relevant to any physician or scientist with an interest in brain function, cerebrovascular disease, cerebral vascular regulation and brain metabolism, including neurologists, neurochemists, physiologists, pharmacologists, anesthesiologists, neuroradiologists, neurosurgeons, neuropathologists and neuroscientists.