{"title":"Adversarial graph node classification based on unsupervised learning and optimized loss functions","authors":"","doi":"10.1007/s12652-024-04768-0","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>The research field of this paper is unsupervised learning in machine learning, aiming to address the problem of how to simultaneously resist feature attacks and improve model classification performance in unsupervised learning. For this purpose, this paper proposes a method to add an optimized loss function after the graph encoding and representation stage. When the samples are relatively balanced, we choose the cross-entropy loss function for classification. When difficult-to-classify samples appear, an optimized Focal Loss*() function is used to adjust the weights of these samples, to solve the problem of imbalanced positive and negative samples during training. The developed method achieved superior performance accuracy with the values of 0.721 on the Cora dataset, 0.598 on the Citeseer dataset,0.862 on the Polblogs dataset. Moreover, the testing accuracy value achieved by optimized model is 0.745, 0.627, 0.892 on the three benchmark datasets, respectively. Experimental results show that the proposed method effectively improves the robustness of adversarial training models in downstream tasks and reduces potential interference with original data. All the test results are validated with the k-fold cross validation method in order to make an assessment of the generalizability of these results.</p>","PeriodicalId":14959,"journal":{"name":"Journal of Ambient Intelligence and Humanized Computing","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ambient Intelligence and Humanized Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s12652-024-04768-0","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0
Abstract
The research field of this paper is unsupervised learning in machine learning, aiming to address the problem of how to simultaneously resist feature attacks and improve model classification performance in unsupervised learning. For this purpose, this paper proposes a method to add an optimized loss function after the graph encoding and representation stage. When the samples are relatively balanced, we choose the cross-entropy loss function for classification. When difficult-to-classify samples appear, an optimized Focal Loss*() function is used to adjust the weights of these samples, to solve the problem of imbalanced positive and negative samples during training. The developed method achieved superior performance accuracy with the values of 0.721 on the Cora dataset, 0.598 on the Citeseer dataset,0.862 on the Polblogs dataset. Moreover, the testing accuracy value achieved by optimized model is 0.745, 0.627, 0.892 on the three benchmark datasets, respectively. Experimental results show that the proposed method effectively improves the robustness of adversarial training models in downstream tasks and reduces potential interference with original data. All the test results are validated with the k-fold cross validation method in order to make an assessment of the generalizability of these results.
期刊介绍:
The purpose of JAIHC is to provide a high profile, leading edge forum for academics, industrial professionals, educators and policy makers involved in the field to contribute, to disseminate the most innovative researches and developments of all aspects of ambient intelligence and humanized computing, such as intelligent/smart objects, environments/spaces, and systems. The journal discusses various technical, safety, personal, social, physical, political, artistic and economic issues. The research topics covered by the journal are (but not limited to):
Pervasive/Ubiquitous Computing and Applications
Cognitive wireless sensor network
Embedded Systems and Software
Mobile Computing and Wireless Communications
Next Generation Multimedia Systems
Security, Privacy and Trust
Service and Semantic Computing
Advanced Networking Architectures
Dependable, Reliable and Autonomic Computing
Embedded Smart Agents
Context awareness, social sensing and inference
Multi modal interaction design
Ergonomics and product prototyping
Intelligent and self-organizing transportation networks & services
Healthcare Systems
Virtual Humans & Virtual Worlds
Wearables sensors and actuators