Firas Salika, Hassan Harb, Chamseddine Zaki, Eric Saux
{"title":"MEDCO: an efficient protocol for data compression in wireless body sensor network","authors":"Firas Salika, Hassan Harb, Chamseddine Zaki, Eric Saux","doi":"10.1007/s12652-024-04858-z","DOIUrl":null,"url":null,"abstract":"<p>This paper introduces a new protocol named MEDCO for eMErgency Detection and COmpression, designed to minimize data transmission and optimize sensor energy usage in wireless body sensor networks. MEDCO operates in two stages. The first stage assesses the patient’s condition based on vital signs and compares it with the previous state to determine if the data should be transmitted to medical staff. Data is only sent if a change in the patient’s situation is detected. The second stage focuses on compressing the identified data using two algorithms: range and changed vital signs methods. The range method classifies patient readings into ranges based on the current health situation before compressing them. At the same time, the changed vital signs algorithm considers both current and previous situations during compression. Through simulations using actual patient data, we demonstrated the effectiveness of our protocol in reducing data transmission by 97% while maintaining a high level of accuracy in the transmitted information. The range method outperforms by achieving an additional data reduction of 34.6% compared to the selected protocol from state of the art, and the changed vital signs method achieves a reduction of 6.4%.</p>","PeriodicalId":14959,"journal":{"name":"Journal of Ambient Intelligence and Humanized Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ambient Intelligence and Humanized Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s12652-024-04858-z","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0
Abstract
This paper introduces a new protocol named MEDCO for eMErgency Detection and COmpression, designed to minimize data transmission and optimize sensor energy usage in wireless body sensor networks. MEDCO operates in two stages. The first stage assesses the patient’s condition based on vital signs and compares it with the previous state to determine if the data should be transmitted to medical staff. Data is only sent if a change in the patient’s situation is detected. The second stage focuses on compressing the identified data using two algorithms: range and changed vital signs methods. The range method classifies patient readings into ranges based on the current health situation before compressing them. At the same time, the changed vital signs algorithm considers both current and previous situations during compression. Through simulations using actual patient data, we demonstrated the effectiveness of our protocol in reducing data transmission by 97% while maintaining a high level of accuracy in the transmitted information. The range method outperforms by achieving an additional data reduction of 34.6% compared to the selected protocol from state of the art, and the changed vital signs method achieves a reduction of 6.4%.
期刊介绍:
The purpose of JAIHC is to provide a high profile, leading edge forum for academics, industrial professionals, educators and policy makers involved in the field to contribute, to disseminate the most innovative researches and developments of all aspects of ambient intelligence and humanized computing, such as intelligent/smart objects, environments/spaces, and systems. The journal discusses various technical, safety, personal, social, physical, political, artistic and economic issues. The research topics covered by the journal are (but not limited to):
Pervasive/Ubiquitous Computing and Applications
Cognitive wireless sensor network
Embedded Systems and Software
Mobile Computing and Wireless Communications
Next Generation Multimedia Systems
Security, Privacy and Trust
Service and Semantic Computing
Advanced Networking Architectures
Dependable, Reliable and Autonomic Computing
Embedded Smart Agents
Context awareness, social sensing and inference
Multi modal interaction design
Ergonomics and product prototyping
Intelligent and self-organizing transportation networks & services
Healthcare Systems
Virtual Humans & Virtual Worlds
Wearables sensors and actuators