首页 > 最新文献

Journal of Ambient Intelligence and Humanized Computing最新文献

英文 中文
Predicting the unconfined compressive strength of stabilized soil using random forest coupled with meta-heuristic algorithms 利用随机森林和元启发式算法预测稳定土的无压抗压强度
3区 计算机科学 Q1 Computer Science Pub Date : 2024-09-16 DOI: 10.1007/s12652-024-04857-0
Yan Li

Unconfined Compressive Strength (UCS) is a crucial mechanical parameter of rocks, which is pivotal in developing accurate geomechanical models. Traditionally, UCS estimation involves expensive and time-consuming methods, such as lab testing of retrieved core samples or well-log data analysis. This research presents a novel approach for real-time estimation of UCS, crucial in various geomechanical applications. It employs Random Forest (RF) prediction models enhanced by Runge Kutta Optimization (RKO) and Beluga Whale Optimization (BWO) algorithms for improved accuracy and efficiency. Validation using UCS samples from diverse soil types yields three distinct models: RFRK (RF + RKO), RFBW (RF + BWO), and an individual RF model, each contributing valuable insights. The RFBW model particularly stands out with high R2 values (0.994) and a favorable RMSE (73.93), indicating superior predictive and generalization capabilities. This method represents a significant advancement in UCS prediction, offering efficiency and time-saving benefits across geomechanical fields.

非收缩抗压强度(UCS)是岩石的一个重要力学参数,对于开发精确的地质力学模型至关重要。传统上,UCS 的估算需要采用昂贵而耗时的方法,如在实验室测试取回的岩心样本或分析井记录数据。本研究提出了一种实时估算 UCS 的新方法,这在各种地质力学应用中至关重要。它采用随机森林(RF)预测模型,并通过 Runge Kutta 优化(RKO)和白鲸优化(BWO)算法进行增强,以提高准确性和效率。使用来自不同土壤类型的 UCS 样本进行验证,得出了三种不同的模型:RFRK 模型(RF + RKO)、RFBW 模型(RF + BWO)和单独的 RF 模型,每个模型都能提供有价值的见解。RFBW 模型尤为突出,具有较高的 R2 值(0.994)和较好的 RMSE 值(73.93),显示出卓越的预测和概括能力。该方法代表了 UCS 预测领域的重大进步,为整个地质力学领域提供了高效、省时的优势。
{"title":"Predicting the unconfined compressive strength of stabilized soil using random forest coupled with meta-heuristic algorithms","authors":"Yan Li","doi":"10.1007/s12652-024-04857-0","DOIUrl":"https://doi.org/10.1007/s12652-024-04857-0","url":null,"abstract":"<p>Unconfined Compressive Strength (UCS) is a crucial mechanical parameter of rocks, which is pivotal in developing accurate geomechanical models. Traditionally, UCS estimation involves expensive and time-consuming methods, such as lab testing of retrieved core samples or well-log data analysis. This research presents a novel approach for real-time estimation of UCS, crucial in various geomechanical applications. It employs Random Forest (RF) prediction models enhanced by Runge Kutta Optimization (RKO) and Beluga Whale Optimization (BWO) algorithms for improved accuracy and efficiency. Validation using UCS samples from diverse soil types yields three distinct models: RFRK (RF + RKO), RFBW (RF + BWO), and an individual RF model, each contributing valuable insights. The RFBW model particularly stands out with high R<sup>2</sup> values (0.994) and a favorable RMSE (73.93), indicating superior predictive and generalization capabilities. This method represents a significant advancement in UCS prediction, offering efficiency and time-saving benefits across geomechanical fields.</p>","PeriodicalId":14959,"journal":{"name":"Journal of Ambient Intelligence and Humanized Computing","volume":"20 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142257063","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Expressive sign language system for deaf kids with MPEG-4 approach of virtual human character 采用 MPEG-4 虚拟人物方法的聋哑儿童手语表达系统
3区 计算机科学 Q1 Computer Science Pub Date : 2024-09-14 DOI: 10.1007/s12652-024-04842-7
Itimad Raheem Ali, Hoshang Kolivand

Children with language impairments during their significant developmental periods within ‎childhood are exposed to cognitive risk, social impairments, along with language. This is difficult ‎with children born deaf from hearing parents who own little or no experience of communicating ‎in sign language. This system presents the sign language in the context of British ‎Sign Language (BSL) for producing utterances through virtual characters. In capturing, Kinect ‎sensors use a motion capture sensor for motion actors. The connection uses sensors to read data, ‎connect to high-quality 3D scans, and then use these high-quality scans of the animated MPEG-4 ‎face and hand models. The main challenges of this system are the simultaneous capture of data ‎for the whole hand and the development of the MPEG-4 approach considering the animation ‎engines with descriptive sign language features. After synchronizing motion data from motion ‎capture results with Kinect, the combined hand character adjusts points, frames, and time with ‎virtual characters based on the motion of character actors. This study demonstrates the skills of ‎this sign language system instrumental in presenting an assessment by users, highlighting the ‎importance of the hand part in creating new accents and signs in BSL. We have validated this ‎system by testing the reliability and functionality of the virtual characters.‎.

有语言障碍的儿童在其童年的重要发展时期面临着认知风险、社交障碍和语言障碍。听力正常的父母很少或根本没有用手语交流的经验,而天生耳聋的儿童则很难做到这一点。该系统在英国手语(BSL)的背景下呈现手语,通过虚拟人物来产生话语。在捕捉过程中,Kinect 传感器使用动作捕捉传感器来捕捉动作演员。连接使用传感器读取数据,连接到高质量三维扫描,然后使用这些高质量扫描的动画 MPEG-4 脸部和手部模型。该系统面临的主要挑战是同步捕捉整只手的数据,以及开发考虑到具有描述性手语特征的动画引擎的 MPEG-4 方法。在将运动捕捉结果中的运动数据与 Kinect 同步后,组合的手部角色会根据角色演员的动作与虚拟角色一起调整点、帧和时间。这项研究展示了这一手语系统在用户评估中的技能,突出了手部在创建新口音和手语符号中的重要性。我们通过测试虚拟人物的可靠性和功能性验证了这一系统。
{"title":"Expressive sign language system for deaf kids with MPEG-4 approach of virtual human character","authors":"Itimad Raheem Ali, Hoshang Kolivand","doi":"10.1007/s12652-024-04842-7","DOIUrl":"https://doi.org/10.1007/s12652-024-04842-7","url":null,"abstract":"<p>Children with language impairments during their significant developmental periods within ‎childhood are exposed to cognitive risk, social impairments, along with language. This is difficult ‎with children born deaf from hearing parents who own little or no experience of communicating ‎in sign language. This system presents the sign language in the context of British ‎Sign Language (BSL) for producing utterances through virtual characters. In capturing, Kinect ‎sensors use a motion capture sensor for motion actors. The connection uses sensors to read data, ‎connect to high-quality 3D scans, and then use these high-quality scans of the animated MPEG-4 ‎face and hand models. The main challenges of this system are the simultaneous capture of data ‎for the whole hand and the development of the MPEG-4 approach considering the animation ‎engines with descriptive sign language features. After synchronizing motion data from motion ‎capture results with Kinect, the combined hand character adjusts points, frames, and time with ‎virtual characters based on the motion of character actors. This study demonstrates the skills of ‎this sign language system instrumental in presenting an assessment by users, highlighting the ‎importance of the hand part in creating new accents and signs in BSL. We have validated this ‎system by testing the reliability and functionality of the virtual characters.‎.</p>","PeriodicalId":14959,"journal":{"name":"Journal of Ambient Intelligence and Humanized Computing","volume":"4 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142257062","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MEDCO: an efficient protocol for data compression in wireless body sensor network MEDCO:无线人体传感器网络中的高效数据压缩协议
3区 计算机科学 Q1 Computer Science Pub Date : 2024-09-14 DOI: 10.1007/s12652-024-04858-z
Firas Salika, Hassan Harb, Chamseddine Zaki, Eric Saux

This paper introduces a new protocol named MEDCO for eMErgency Detection and COmpression, designed to minimize data transmission and optimize sensor energy usage in wireless body sensor networks. MEDCO operates in two stages. The first stage assesses the patient’s condition based on vital signs and compares it with the previous state to determine if the data should be transmitted to medical staff. Data is only sent if a change in the patient’s situation is detected. The second stage focuses on compressing the identified data using two algorithms: range and changed vital signs methods. The range method classifies patient readings into ranges based on the current health situation before compressing them. At the same time, the changed vital signs algorithm considers both current and previous situations during compression. Through simulations using actual patient data, we demonstrated the effectiveness of our protocol in reducing data transmission by 97% while maintaining a high level of accuracy in the transmitted information. The range method outperforms by achieving an additional data reduction of 34.6% compared to the selected protocol from state of the art, and the changed vital signs method achieves a reduction of 6.4%.

本文介绍了一种名为 "紧急检测和压缩"(MEDCO for eMErgency Detection and COmpression)的新协议,旨在尽量减少无线人体传感器网络中的数据传输并优化传感器的能源使用。MEDCO 分两个阶段运行。第一阶段根据生命体征评估病人的状况,并与之前的状态进行比较,以确定是否应将数据传输给医务人员。只有在检测到病人情况发生变化时,才会发送数据。第二阶段的重点是使用两种算法压缩已识别的数据:范围法和生命体征变化法。范围法根据当前的健康状况将病人的读数分为不同的范围,然后再进行压缩。同时,生命体征变化算法在压缩过程中会考虑当前和之前的情况。通过使用实际病人数据进行模拟,我们证明了我们的协议能有效减少 97% 的数据传输,同时保持传输信息的高准确性。与最新技术中的选定协议相比,范围法的性能更胜一筹,额外减少了 34.6% 的数据,而生命体征变化法则减少了 6.4%。
{"title":"MEDCO: an efficient protocol for data compression in wireless body sensor network","authors":"Firas Salika, Hassan Harb, Chamseddine Zaki, Eric Saux","doi":"10.1007/s12652-024-04858-z","DOIUrl":"https://doi.org/10.1007/s12652-024-04858-z","url":null,"abstract":"<p>This paper introduces a new protocol named MEDCO for eMErgency Detection and COmpression, designed to minimize data transmission and optimize sensor energy usage in wireless body sensor networks. MEDCO operates in two stages. The first stage assesses the patient’s condition based on vital signs and compares it with the previous state to determine if the data should be transmitted to medical staff. Data is only sent if a change in the patient’s situation is detected. The second stage focuses on compressing the identified data using two algorithms: range and changed vital signs methods. The range method classifies patient readings into ranges based on the current health situation before compressing them. At the same time, the changed vital signs algorithm considers both current and previous situations during compression. Through simulations using actual patient data, we demonstrated the effectiveness of our protocol in reducing data transmission by 97% while maintaining a high level of accuracy in the transmitted information. The range method outperforms by achieving an additional data reduction of 34.6% compared to the selected protocol from state of the art, and the changed vital signs method achieves a reduction of 6.4%.</p>","PeriodicalId":14959,"journal":{"name":"Journal of Ambient Intelligence and Humanized Computing","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142257064","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A multi-objective gene selection for cancer diagnosis using particle swarm optimization and mutual information 利用粒子群优化和互信息进行癌症诊断的多目标基因选择
3区 计算机科学 Q1 Computer Science Pub Date : 2024-09-12 DOI: 10.1007/s12652-024-04853-4
Azar Rafie, Parham Moradi

Gene expression profiling for cancer diagnosis requires the identification of optimal and non-redundant gene subsets from microarray data. We present a multi-objective particle swarm optimization (PSO) approach that balances gene-class relevancy and inter-gene redundancy by integrating mutual information. Our method employs a dual-phase search strategy: an initial PSO search followed by a local search to accelerate convergence, and a subsequent Pareto front selection to extract the non-dominated gene subsets. Experiments on cancer microarray benchmark datasets demonstrate that our approach significantly enhances feature selection and diagnosis accuracy compared to existing methods. Notably, our approach incorporates a novel dual-evaluation framework and an improved particle representation scheme, which collectively enhance robustness and prevent premature convergence. These innovations ensure a comprehensive and effective gene selection process for cancer diagnosis.

用于癌症诊断的基因表达谱分析需要从微阵列数据中识别最佳和非冗余的基因子集。我们提出了一种多目标粒子群优化(PSO)方法,通过整合互信息来平衡基因类别相关性和基因间冗余性。我们的方法采用了双阶段搜索策略:初始 PSO 搜索后进行局部搜索以加速收敛,随后进行帕累托前沿选择以提取非优势基因子集。在癌症微阵列基准数据集上的实验表明,与现有方法相比,我们的方法显著提高了特征选择和诊断准确率。值得注意的是,我们的方法采用了新颖的双重评估框架和改进的粒子表示方案,它们共同提高了鲁棒性,防止了过早收敛。这些创新确保了癌症诊断中全面有效的基因选择过程。
{"title":"A multi-objective gene selection for cancer diagnosis using particle swarm optimization and mutual information","authors":"Azar Rafie, Parham Moradi","doi":"10.1007/s12652-024-04853-4","DOIUrl":"https://doi.org/10.1007/s12652-024-04853-4","url":null,"abstract":"<p>Gene expression profiling for cancer diagnosis requires the identification of optimal and non-redundant gene subsets from microarray data. We present a multi-objective particle swarm optimization (PSO) approach that balances gene-class relevancy and inter-gene redundancy by integrating mutual information. Our method employs a dual-phase search strategy: an initial PSO search followed by a local search to accelerate convergence, and a subsequent Pareto front selection to extract the non-dominated gene subsets. Experiments on cancer microarray benchmark datasets demonstrate that our approach significantly enhances feature selection and diagnosis accuracy compared to existing methods. Notably, our approach incorporates a novel dual-evaluation framework and an improved particle representation scheme, which collectively enhance robustness and prevent premature convergence. These innovations ensure a comprehensive and effective gene selection process for cancer diagnosis.</p>","PeriodicalId":14959,"journal":{"name":"Journal of Ambient Intelligence and Humanized Computing","volume":"12 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142202579","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Partial policy hidden medical data access control method based on CP-ABE 基于 CP-ABE 的部分策略隐藏式医疗数据访问控制方法
3区 计算机科学 Q1 Computer Science Pub Date : 2024-09-11 DOI: 10.1007/s12652-024-04843-6
Jing Huang, Detao Tang, Chenyu Jiang, Fulong Chen, Ji Zhang, Dong Xie, Taochun Wang, Chuanxin Zhao, Chao Wang, Jintao Li

The secure sharing and privacy protection of medical data are of great significance during the development of smart medical care. In order to achieve data sharing among medical institutions, ciphertext-policy attribute-based encryption (CP-ABE), a potential technology, allows users to encrypt data under access policies which are defined on certain attributes of the data consumer, and only allows the data consumer to decrypt those attributes conforming to the access policy. However, some existing CP-ABE schemes still have some shortcomings. For example, the efficiency of encryption and decryption is not high enough, and some cannot support more sufficient and expressive access structures. To solve the above problems, combined with blockchain, this paper presents a CP-ABE scheme with partial policy hiding based on prime order bilinear groups. Extensive experiment and analysis results reveal that the proposed scheme protects the privacy of users and realizes that attribute values are hidden in the access policy.

医疗数据的安全共享和隐私保护在智慧医疗的发展过程中具有重要意义。为了实现医疗机构间的数据共享,基于属性的密文策略加密(CP-ABE)作为一种潜在的技术,允许用户在访问策略下对数据进行加密,这些访问策略是根据数据消费者的某些属性定义的,只允许数据消费者对符合访问策略的属性进行解密。然而,现有的一些 CP-ABE 方案仍存在一些缺陷。例如,加密和解密的效率不够高,有些方案无法支持更充分、更有表现力的访问结构。为了解决上述问题,本文结合区块链,提出了一种基于素阶双线性群的具有部分策略隐藏功能的 CP-ABE 方案。大量实验和分析结果表明,本文提出的方案既保护了用户隐私,又实现了属性值在访问策略中的隐藏。
{"title":"Partial policy hidden medical data access control method based on CP-ABE","authors":"Jing Huang, Detao Tang, Chenyu Jiang, Fulong Chen, Ji Zhang, Dong Xie, Taochun Wang, Chuanxin Zhao, Chao Wang, Jintao Li","doi":"10.1007/s12652-024-04843-6","DOIUrl":"https://doi.org/10.1007/s12652-024-04843-6","url":null,"abstract":"<p>The secure sharing and privacy protection of medical data are of great significance during the development of smart medical care. In order to achieve data sharing among medical institutions, ciphertext-policy attribute-based encryption (CP-ABE), a potential technology, allows users to encrypt data under access policies which are defined on certain attributes of the data consumer, and only allows the data consumer to decrypt those attributes conforming to the access policy. However, some existing CP-ABE schemes still have some shortcomings. For example, the efficiency of encryption and decryption is not high enough, and some cannot support more sufficient and expressive access structures. To solve the above problems, combined with blockchain, this paper presents a CP-ABE scheme with partial policy hiding based on prime order bilinear groups. Extensive experiment and analysis results reveal that the proposed scheme protects the privacy of users and realizes that attribute values are hidden in the access policy.</p>","PeriodicalId":14959,"journal":{"name":"Journal of Ambient Intelligence and Humanized Computing","volume":"8 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142202694","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Maximum dry density estimation of stabilized soil via machine learning techniques in individual and hybrid approaches 通过单独和混合方法中的机器学习技术估算稳定土的最大干密度
3区 计算机科学 Q1 Computer Science Pub Date : 2024-09-11 DOI: 10.1007/s12652-024-04860-5
Lianping Zhao, Guan Dashu Guan

In geotechnical engineering, the maximum dry density (MDD) stands as an important parameter, denoting the utmost mass of soil achievable per unit volume when compacted to its maximum dry state. Its significance extends to the design of various earthworks like embankments, foundations, and pavements, influencing the soil’s strength, stiffness, and stability. The MDD is contingent on diverse elements like soil type, grain size distribution, moisture content and compaction effort. Generally, heightened compaction effort correlates with an increased MDD, while elevated moisture content corresponds to a reduced MDD. Accurate prediction of the MDD under specific conditions is imperative to uphold the quality and safety standards of earthworks. This research aims to introduce Support Vector Regression (SVR) as a modeling technique for predicting the MDD of soil-stabilizer mixtures. To establish an accurate and comprehensive model that can correlate the stabilized soil’s MDD with attributes of natural soil, consisting linear shrinkage, particle size distribution, plasticity, as well as the type and number of stabilizing additives, three optimization algorithms, namely Artificial Rabbits Optimization (ARO), Manta Ray Foraging Optimization (MRFO), and Improved Manta-Ray Foraging Optimizer (IMRFO), were employed in addition to SVR. Considering the results of evaluative metrics, the SVAR model (combination of SVR and ARO) experienced the highest predictive performance, registering an impressive value of R2 in the training phase with 0.9948, as well as the lowest RMSE value of 19.1376.

在岩土工程中,最大干密度(MDD)是一个重要参数,表示土壤在压实到最大干密度状态时单位体积所能达到的最大质量。它对各种土方工程(如路堤、地基和路面)的设计具有重要意义,影响着土壤的强度、刚度和稳定性。MDD 取决于土壤类型、粒度分布、含水量和压实力度等不同因素。一般来说,压实力度的增加与 MDD 的增加有关,而含水量的增加则与 MDD 的减少有关。要保证土方工程的质量和安全标准,就必须准确预测特定条件下的 MDD。本研究旨在引入支持向量回归(SVR)作为预测土壤稳定剂混合物 MDD 的建模技术。为了建立一个准确、全面的模型,将稳定土的 MDD 与天然土壤的属性(包括线性收缩、粒度分布、塑性以及稳定添加剂的类型和数量)相关联,除 SVR 外,还采用了三种优化算法,即人工兔子优化算法(ARO)、蝠鲼觅食优化算法(MRFO)和改进的蝠鲼觅食优化算法(IMRFO)。从评价指标的结果来看,SVAR 模型(SVR 和 ARO 的组合)的预测性能最高,在训练阶段的 R2 值达到了惊人的 0.9948,RMSE 值最低,为 19.1376。
{"title":"Maximum dry density estimation of stabilized soil via machine learning techniques in individual and hybrid approaches","authors":"Lianping Zhao, Guan Dashu Guan","doi":"10.1007/s12652-024-04860-5","DOIUrl":"https://doi.org/10.1007/s12652-024-04860-5","url":null,"abstract":"<p>In geotechnical engineering, the maximum dry density (MDD) stands as an important parameter, denoting the utmost mass of soil achievable per unit volume when compacted to its maximum dry state. Its significance extends to the design of various earthworks like embankments, foundations, and pavements, influencing the soil’s strength, stiffness, and stability. The MDD is contingent on diverse elements like soil type, grain size distribution, moisture content and compaction effort. Generally, heightened compaction effort correlates with an increased MDD, while elevated moisture content corresponds to a reduced MDD. Accurate prediction of the MDD under specific conditions is imperative to uphold the quality and safety standards of earthworks. This research aims to introduce Support Vector Regression (SVR) as a modeling technique for predicting the MDD of soil-stabilizer mixtures. To establish an accurate and comprehensive model that can correlate the stabilized soil’s MDD with attributes of natural soil, consisting linear shrinkage, particle size distribution, plasticity, as well as the type and number of stabilizing additives, three optimization algorithms, namely Artificial Rabbits Optimization (ARO), Manta Ray Foraging Optimization (MRFO), and Improved Manta-Ray Foraging Optimizer (IMRFO), were employed in addition to SVR. Considering the results of evaluative metrics, the SVAR model (combination of SVR and ARO) experienced the highest predictive performance, registering an impressive value of R<sup>2</sup> in the training phase with 0.9948, as well as the lowest RMSE value of 19.1376.</p>","PeriodicalId":14959,"journal":{"name":"Journal of Ambient Intelligence and Humanized Computing","volume":"3 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142227800","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Kernel density-based radio map optimization using human trajectory for indoor localization 基于核密度的无线电地图优化,利用人体轨迹进行室内定位
3区 计算机科学 Q1 Computer Science Pub Date : 2024-09-05 DOI: 10.1007/s12652-024-04850-7
Yun Fen Yong, Chee Keong Tan, Ian K. T. Tan, Su Wei Tan

Accurate indoor localization remains a significant challenge due to the complex nature of indoor environments. This paper proposes a novel method for constructing a radio map (RM) based on Kernel density estimation (KDE) and human trajectories (HT) to enhance indoor localization accuracy. The proposed method utilizes historical HT data in RM construction to capture the spatial variability and complexity of indoor environments, which is crucial for accurate localization. By employing KDE, kernel density maps are generated, identifying high-density regions where additional interpolated fingerprints are strategically placed to improve localization accuracy. In contrast to the conventional method of uniformly placing interpolated points (IPs), the proposed approach better models natural walking patterns and trajectories, thereby enhancing the uniqueness and accuracy of user position identification. Through extensive experiments with various HT patterns, the proposed KDE-RM optimization method consistently outperforms the conventional approach of evenly distributed IPs using Kriging and inverse distance weighting interpolation by up to 36.4%. This demonstrates the effectiveness and potential of the proposed method as a valuable tool for enhancing indoor localization.

由于室内环境的复杂性,准确的室内定位仍然是一项重大挑战。本文提出了一种基于核密度估计(KDE)和人类轨迹(HT)构建无线电地图(RM)的新方法,以提高室内定位的准确性。所提出的方法在构建 RM 时利用了历史 HT 数据,以捕捉室内环境的空间变化和复杂性,这对精确定位至关重要。通过使用 KDE,可生成内核密度图,识别出高密度区域,在这些区域战略性地放置额外的插值指纹,以提高定位精度。与均匀放置插值点(IP)的传统方法相比,所提出的方法能更好地模拟自然行走模式和轨迹,从而提高用户位置识别的独特性和准确性。通过对各种 HT 模式的大量实验,所提出的 KDE-RM 优化方法始终优于使用克里金法和反距离加权插值均匀分布 IP 的传统方法,最高可达 36.4%。这证明了所提方法的有效性和潜力,是增强室内定位的重要工具。
{"title":"Kernel density-based radio map optimization using human trajectory for indoor localization","authors":"Yun Fen Yong, Chee Keong Tan, Ian K. T. Tan, Su Wei Tan","doi":"10.1007/s12652-024-04850-7","DOIUrl":"https://doi.org/10.1007/s12652-024-04850-7","url":null,"abstract":"<p>Accurate indoor localization remains a significant challenge due to the complex nature of indoor environments. This paper proposes a novel method for constructing a radio map (RM) based on Kernel density estimation (KDE) and human trajectories (HT) to enhance indoor localization accuracy. The proposed method utilizes historical HT data in RM construction to capture the spatial variability and complexity of indoor environments, which is crucial for accurate localization. By employing KDE, kernel density maps are generated, identifying high-density regions where additional interpolated fingerprints are strategically placed to improve localization accuracy. In contrast to the conventional method of uniformly placing interpolated points (IPs), the proposed approach better models natural walking patterns and trajectories, thereby enhancing the uniqueness and accuracy of user position identification. Through extensive experiments with various HT patterns, the proposed KDE-RM optimization method consistently outperforms the conventional approach of evenly distributed IPs using Kriging and inverse distance weighting interpolation by up to 36.4%. This demonstrates the effectiveness and potential of the proposed method as a valuable tool for enhancing indoor localization.</p>","PeriodicalId":14959,"journal":{"name":"Journal of Ambient Intelligence and Humanized Computing","volume":"21 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142202692","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neural network-based soil parameters predictive coordination algorithm for energy efficient wireless sensor network 基于神经网络的高能效无线传感器网络土壤参数预测协调算法
3区 计算机科学 Q1 Computer Science Pub Date : 2024-09-04 DOI: 10.1007/s12652-024-04848-1
Dinesh Sharma, Geetam Singh Tomar

The utilization of Wireless Sensor Networks (WSN) in the agricultural field represents a significant stride in the application of Information Technology. Recent advancements in technology have made it possible for sensor networks not only to provide real-time information about soil nutrient levels but also to assist in the automation of various agricultural processes. However, it’s crucial to acknowledge a substantial limitation associated with WSN, namely, energy consumption. Through the analysis of experimental data gathered from diverse soil types and employing sophisticated data analytics, it has been observed that the Nutrient Index exhibits a relatively stable pattern over time. Consequently, predictive neural network techniques can be employed to extract detailed insights from the primary inputs received from WSN. This approach eliminates the need for continuous operation of the WSN throughout the day, contributing to enhanced energy efficiency. To achieve this energy-efficient operation, the NR-MDEC protocol is implemented in conjunction with a coordination algorithm, resulting in a substantial improvement in overall efficiency.

在农业领域使用无线传感器网络(WSN)是信息技术应用的一大进步。最近的技术进步使传感器网络不仅能够提供有关土壤养分水平的实时信息,还能协助实现各种农业流程的自动化。然而,必须承认 WSN 的一个重要局限性,即能源消耗。通过分析从不同土壤类型收集到的实验数据,并采用复杂的数据分析方法,可以观察到养分指数随着时间的推移呈现出相对稳定的模式。因此,可以采用预测性神经网络技术,从 WSN 接收到的主要输入中提取详细的见解。这种方法消除了 WSN 全天持续运行的需要,有助于提高能源效率。为了实现这种高能效运行,NR-MDEC 协议与协调算法结合使用,从而大大提高了整体效率。
{"title":"Neural network-based soil parameters predictive coordination algorithm for energy efficient wireless sensor network","authors":"Dinesh Sharma, Geetam Singh Tomar","doi":"10.1007/s12652-024-04848-1","DOIUrl":"https://doi.org/10.1007/s12652-024-04848-1","url":null,"abstract":"<p>The utilization of Wireless Sensor Networks (WSN) in the agricultural field represents a significant stride in the application of Information Technology. Recent advancements in technology have made it possible for sensor networks not only to provide real-time information about soil nutrient levels but also to assist in the automation of various agricultural processes. However, it’s crucial to acknowledge a substantial limitation associated with WSN, namely, energy consumption. Through the analysis of experimental data gathered from diverse soil types and employing sophisticated data analytics, it has been observed that the Nutrient Index exhibits a relatively stable pattern over time. Consequently, predictive neural network techniques can be employed to extract detailed insights from the primary inputs received from WSN. This approach eliminates the need for continuous operation of the WSN throughout the day, contributing to enhanced energy efficiency. To achieve this energy-efficient operation, the NR-MDEC protocol is implemented in conjunction with a coordination algorithm, resulting in a substantial improvement in overall efficiency.</p>","PeriodicalId":14959,"journal":{"name":"Journal of Ambient Intelligence and Humanized Computing","volume":"20 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142202691","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analyzing the impact of conversation structure on predicting persuasive comments online 分析对话结构对预测网上劝说性评论的影响
3区 计算机科学 Q1 Computer Science Pub Date : 2024-09-02 DOI: 10.1007/s12652-024-04841-8
Nicola Capuano, Marco Meyer, Francesco David Nota

The topic of persuasion in online conversations has social, political and security implications; as a consequence, the problem of predicting persuasive comments in online discussions is receiving increasing attention in the literature. Following recent advancements in graph neural networks, we analyze the impact of conversation structure in predicting persuasive comments in online discussions. We evaluate the performance of artificial intelligence models receiving as input graphs constructed on the top of online conversations sourced from the “Change My View” Reddit channel. We experiment with different graph architectures and compare the performance on graph neural networks, as structure-based models, and dense neural networks as baseline models. Experiments are conducted on two tasks: (1) persuasive comment detection, aiming to predict which comments are persuasive, and (2) influence prediction, aiming to predict which users are persuasive. The experimental results show that the role of the conversation structure in predicting persuasiveness is strongly dependent on its graph representation given as input to the graph neural network. In particular, a graph structure linking only comments belonging to the same speaker in the conversation achieves the best performance in both tasks. This structure outperforms both the baseline model, which does not consider any structural information, and structures linking different speakers’ comments with each other. Specifically, the F1 score of the best performing model is 0.58, which represents an improvement of 5.45% over the baseline model (F1 score of 0.55) and 7.41% over the model linking different speakers’ comments (F1 score of 0.54).

在线对话中的劝说话题具有社会、政治和安全影响;因此,预测在线讨论中劝说性评论的问题在文献中受到越来越多的关注。根据图神经网络的最新进展,我们分析了对话结构对预测在线讨论中劝说性评论的影响。我们以 "改变我的观点 "Reddit 频道中的在线对话顶部构建的图作为输入,对人工智能模型的性能进行了评估。我们实验了不同的图架构,并比较了图神经网络(作为基于结构的模型)和密集神经网络(作为基线模型)的性能。我们在两个任务上进行了实验:(1)劝说性评论检测,旨在预测哪些评论具有劝说性;(2)影响力预测,旨在预测哪些用户具有劝说性。实验结果表明,对话结构在预测说服力方面的作用在很大程度上取决于作为图神经网络输入的图表示。特别是,在两项任务中,仅连接对话中属于同一发言者的评论的图结构都取得了最佳性能。这种结构优于不考虑任何结构信息的基线模型,也优于将不同发言者的评论相互连接起来的结构。具体来说,表现最好的模型的 F1 得分为 0.58,比基线模型(F1 得分为 0.55)提高了 5.45%,比连接不同发言者评论的模型(F1 得分为 0.54)提高了 7.41%。
{"title":"Analyzing the impact of conversation structure on predicting persuasive comments online","authors":"Nicola Capuano, Marco Meyer, Francesco David Nota","doi":"10.1007/s12652-024-04841-8","DOIUrl":"https://doi.org/10.1007/s12652-024-04841-8","url":null,"abstract":"<p>The topic of persuasion in online conversations has social, political and security implications; as a consequence, the problem of predicting persuasive comments in online discussions is receiving increasing attention in the literature. Following recent advancements in graph neural networks, we analyze the impact of conversation structure in predicting persuasive comments in online discussions. We evaluate the performance of artificial intelligence models receiving as input graphs constructed on the top of online conversations sourced from the “Change My View” Reddit channel. We experiment with different graph architectures and compare the performance on graph neural networks, as structure-based models, and dense neural networks as baseline models. Experiments are conducted on two tasks: (1) persuasive comment detection, aiming to predict which comments are persuasive, and (2) influence prediction, aiming to predict which users are persuasive. The experimental results show that the role of the conversation structure in predicting persuasiveness is strongly dependent on its graph representation given as input to the graph neural network. In particular, a graph structure linking only comments belonging to the same speaker in the conversation achieves the best performance in both tasks. This structure outperforms both the baseline model, which does not consider any structural information, and structures linking different speakers’ comments with each other. Specifically, the F1 score of the best performing model is 0.58, which represents an improvement of 5.45% over the baseline model (F1 score of 0.55) and 7.41% over the model linking different speakers’ comments (F1 score of 0.54).</p>","PeriodicalId":14959,"journal":{"name":"Journal of Ambient Intelligence and Humanized Computing","volume":"7 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142202564","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Emas: an efficient MLWE-based authentication scheme for advanced metering infrastructure in smart grid environment Emas:基于 MLWE 的高效认证方案,适用于智能电网环境中的高级计量基础设施
3区 计算机科学 Q1 Computer Science Pub Date : 2024-09-02 DOI: 10.1007/s12652-024-04852-5
Noureddine Chikouche, Fares Mezrag, Rafik Hamza

Advanced metering infrastructure (AMI) plays a critical role in the smart grid by integrating metering systems with communication capabilities, especially for the industrial internet of things. However, existing authentication protocols have proven ineffective against quantum computing attacks and are computationally intensive since AMI contains limited computing components, such as smart meters. In this paper, we present a novel, efficient module learning with errors-based authentication and key agreement system for AMI, which we call EMAS. As part of the security measures of EMAS, Kyber Post-Quantum Public Key Encryption, a one-time pad mechanism, and hash functions are used. A formal and informal analysis of the security features is presented, showing that the proposed system is secure and resistant to known attacks. The performance analysis of our proposed EMAS on a B-L475E-IOT01A node equipped with a ARM Cortex M4 microcontroller shows that EMAS is more efficient than existing relevant schemes. About the computation time, EMAS takes 15.693 ms. This result is lower than other existing relevant schemes.

高级计量基础设施(AMI)将计量系统与通信功能集成在一起,在智能电网中发挥着至关重要的作用,尤其是在工业物联网中。然而,现有的身份验证协议已被证明无法有效抵御量子计算攻击,而且由于 AMI 包含有限的计算组件(如智能电表),因此需要大量计算。在本文中,我们为 AMI 提出了一种新颖、高效、基于错误的模块学习认证和密钥协议系统,我们称之为 EMAS。作为 EMAS 安全措施的一部分,我们使用了 Kyber 后量子公钥加密、一次性垫机制和哈希函数。我们对安全特性进行了正式和非正式的分析,结果表明所提议的系统是安全的,可以抵御已知的攻击。在配备 ARM Cortex M4 微控制器的 B-L475E-IOT01A 节点上对我们提出的 EMAS 进行的性能分析表明,EMAS 比现有的相关方案更高效。在计算时间方面,EMAS 需要 15.693 毫秒。这一结果低于其他现有相关方案。
{"title":"Emas: an efficient MLWE-based authentication scheme for advanced metering infrastructure in smart grid environment","authors":"Noureddine Chikouche, Fares Mezrag, Rafik Hamza","doi":"10.1007/s12652-024-04852-5","DOIUrl":"https://doi.org/10.1007/s12652-024-04852-5","url":null,"abstract":"<p>Advanced metering infrastructure (AMI) plays a critical role in the smart grid by integrating metering systems with communication capabilities, especially for the industrial internet of things. However, existing authentication protocols have proven ineffective against quantum computing attacks and are computationally intensive since AMI contains limited computing components, such as smart meters. In this paper, we present a novel, efficient module learning with errors-based authentication and key agreement system for AMI, which we call EMAS. As part of the security measures of EMAS, Kyber Post-Quantum Public Key Encryption, a one-time pad mechanism, and hash functions are used. A formal and informal analysis of the security features is presented, showing that the proposed system is secure and resistant to known attacks. The performance analysis of our proposed EMAS on a B-L475E-IOT01A node equipped with a ARM Cortex M4 microcontroller shows that EMAS is more efficient than existing relevant schemes. About the computation time, EMAS takes 15.693 ms. This result is lower than other existing relevant schemes.</p>","PeriodicalId":14959,"journal":{"name":"Journal of Ambient Intelligence and Humanized Computing","volume":"26 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142202565","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Ambient Intelligence and Humanized Computing
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1