Integrated transcriptomics and metabolomics analysis provide insights into the alleviation of waterlogging stress in maize by exogenous spermidine application
Xiuling Wang, Li Niu, Huaipan Liu, Xucun Jia, Yulong Zhao, Qun Wang, Yali Zhao, Pengfei Dong, Moubiao Zhang, Hongping Li, Panpan An, Zhi Li, Xiaohuan Mu, Yongen Zhang, Chaohai Li
{"title":"Integrated transcriptomics and metabolomics analysis provide insights into the alleviation of waterlogging stress in maize by exogenous spermidine application","authors":"Xiuling Wang, Li Niu, Huaipan Liu, Xucun Jia, Yulong Zhao, Qun Wang, Yali Zhao, Pengfei Dong, Moubiao Zhang, Hongping Li, Panpan An, Zhi Li, Xiaohuan Mu, Yongen Zhang, Chaohai Li","doi":"10.1016/j.jia.2024.03.041","DOIUrl":null,"url":null,"abstract":"Waterlogging stress has been found to have adverse impacts on plant growth, subsequently reducing crop yields. Spermidine (Spd), a second messenger, positively affects the growth of plants under waterlogging stress. However, the molecular mechanisms of exogenous Spd application alleviating waterlogging stress remained unclear. In this study, we performed physiological analysis and multi-omics to underlying the effect of Spd application on waterlogging stress. Spd application increased genes expression level of light-harvesting complex (LHC) and photosynthesis-related and starch-related pathway, inhibited chlorophyll degradation and maintained higher photosynthetic rate, thus increased biomass accumulation under waterlogging stress. The activation of genes related trehalose and Spd biosynthesis would result in high accumulation of trehalose and endogenous Spd. Inhibiting 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase (ACO,) expression contributed to reduced ethylene emission. All those changes increased maize resistance to waterlogging. After Spd sparying, auxin-related genes up-regulated and IAA content was increased, those favor cell elongation in maize and thus keep normal growth after Spd application under waterlogging stress. Most of genes involved in lipids were up-regulated and thus increased lipids content and protected cell membranes in maize after Spd application under waterlogging conditions. All those changes contributed to increasing the resistance to waterlogging stress. These findings broaden our understanding of the regulatory roles of Spd in alleviating waterlogging damage and will provide evidence for breeding waterlogging-tolerant maize varieties.","PeriodicalId":16305,"journal":{"name":"Journal of Integrative Agriculture","volume":"110 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Integrative Agriculture","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.jia.2024.03.041","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Waterlogging stress has been found to have adverse impacts on plant growth, subsequently reducing crop yields. Spermidine (Spd), a second messenger, positively affects the growth of plants under waterlogging stress. However, the molecular mechanisms of exogenous Spd application alleviating waterlogging stress remained unclear. In this study, we performed physiological analysis and multi-omics to underlying the effect of Spd application on waterlogging stress. Spd application increased genes expression level of light-harvesting complex (LHC) and photosynthesis-related and starch-related pathway, inhibited chlorophyll degradation and maintained higher photosynthetic rate, thus increased biomass accumulation under waterlogging stress. The activation of genes related trehalose and Spd biosynthesis would result in high accumulation of trehalose and endogenous Spd. Inhibiting 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase (ACO,) expression contributed to reduced ethylene emission. All those changes increased maize resistance to waterlogging. After Spd sparying, auxin-related genes up-regulated and IAA content was increased, those favor cell elongation in maize and thus keep normal growth after Spd application under waterlogging stress. Most of genes involved in lipids were up-regulated and thus increased lipids content and protected cell membranes in maize after Spd application under waterlogging conditions. All those changes contributed to increasing the resistance to waterlogging stress. These findings broaden our understanding of the regulatory roles of Spd in alleviating waterlogging damage and will provide evidence for breeding waterlogging-tolerant maize varieties.
研究发现,水涝胁迫会对植物生长产生不利影响,进而降低作物产量。作为第二信使的精胺(Spd)对植物在涝胁迫下的生长有积极影响。然而,施用外源 Spd 缓解涝胁迫的分子机制仍不清楚。本研究通过生理学分析和多组学研究揭示了施用Spd对涝害胁迫的影响。结果表明,施用Spd能提高光收获复合物(LHC)、光合作用相关和淀粉相关途径基因的表达水平,抑制叶绿素降解,维持较高的光合速率,从而增加涝胁迫下的生物量积累。三卤糖和 Spd 生物合成相关基因的激活会导致三卤糖和内源 Spd 的大量积累。抑制 1-氨基环丙烷-1-羧酸(ACC)氧化酶(ACO)的表达有助于减少乙烯的释放。所有这些变化都增强了玉米的抗涝能力。施用Spd后,辅助素相关基因上调,IAA含量增加,有利于玉米细胞伸长,从而使玉米在涝胁迫下施用Spd后保持正常生长。在涝胁迫条件下施用Spd后,大部分涉及脂质的基因上调,从而增加了脂质含量,保护了玉米的细胞膜。所有这些变化都有助于提高玉米对水涝胁迫的抗性。这些发现拓宽了我们对 Spd 在减轻涝害中的调控作用的认识,并将为培育耐涝玉米品种提供证据。
期刊介绍:
Journal of Integrative Agriculture publishes manuscripts in the categories of Commentary, Review, Research Article, Letter and Short Communication, focusing on the core subjects: Crop Genetics & Breeding, Germplasm Resources, Physiology, Biochemistry, Cultivation, Tillage, Plant Protection, Animal Science, Veterinary Science, Soil and Fertilization, Irrigation, Plant Nutrition, Agro-Environment & Ecology, Bio-material and Bio-energy, Food Science, Agricultural Economics and Management, Agricultural Information Science.