Beta-binomial meta-analysis of individual differences based on sample means and standard deviations: Studying reliability of sum scores of binary items.

IF 7.6 1区 心理学 Q1 PSYCHOLOGY, MULTIDISCIPLINARY Psychological methods Pub Date : 2024-03-14 DOI:10.1037/met0000649
Philipp Doebler, Susanne Frick, Anna Doebler
{"title":"Beta-binomial meta-analysis of individual differences based on sample means and standard deviations: Studying reliability of sum scores of binary items.","authors":"Philipp Doebler, Susanne Frick, Anna Doebler","doi":"10.1037/met0000649","DOIUrl":null,"url":null,"abstract":"<p><p>Individual differences are studied with a multitude of test instruments. Meta-analysis of tests is useful to understand whether individual differences in certain populations can be detected with the help of a class of tests. A method for the quantitative meta-analytical evaluation of test instruments with dichotomous items is introduced. The method assumes beta-binomially distributed test scores, an assumption that has been demonstrated to be plausible in many settings. With this assumption, the method only requires sample means and standard deviations of sum scores (or equivalently means and standard deviations of percent-correct scores), in contrast to methods that use estimates of reliability for a similar purpose. Two parameters are estimated for each sample: mean difficulty and an overdispersion parameter which can be interpreted as the test's ability to detect individual differences. The proposed bivariate meta-analytical approach (random or fixed effects) pools the two parameters simultaneously and allows to perform meta-regression. The bivariate pooling yields a between-sample correlation of mean difficulty parameters and overdispersion parameters. As a side product, reliability estimates are obtained which can be employed to disattenuate correlation coefficients for insufficient reliability when no other estimates are available. A worked example illustrates the method and R code is provided. (PsycInfo Database Record (c) 2024 APA, all rights reserved).</p>","PeriodicalId":20782,"journal":{"name":"Psychological methods","volume":" ","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychological methods","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1037/met0000649","RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Individual differences are studied with a multitude of test instruments. Meta-analysis of tests is useful to understand whether individual differences in certain populations can be detected with the help of a class of tests. A method for the quantitative meta-analytical evaluation of test instruments with dichotomous items is introduced. The method assumes beta-binomially distributed test scores, an assumption that has been demonstrated to be plausible in many settings. With this assumption, the method only requires sample means and standard deviations of sum scores (or equivalently means and standard deviations of percent-correct scores), in contrast to methods that use estimates of reliability for a similar purpose. Two parameters are estimated for each sample: mean difficulty and an overdispersion parameter which can be interpreted as the test's ability to detect individual differences. The proposed bivariate meta-analytical approach (random or fixed effects) pools the two parameters simultaneously and allows to perform meta-regression. The bivariate pooling yields a between-sample correlation of mean difficulty parameters and overdispersion parameters. As a side product, reliability estimates are obtained which can be employed to disattenuate correlation coefficients for insufficient reliability when no other estimates are available. A worked example illustrates the method and R code is provided. (PsycInfo Database Record (c) 2024 APA, all rights reserved).

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于样本平均数和标准差的个体差异贝塔-二项式元分析:研究二元项目总分的可靠性。
研究个体差异的测试工具多种多样。对测验进行元分析有助于了解是否可以借助一类测验来检测某些人群的个体差异。本文介绍了一种对具有二分项目的测验工具进行定量元分析评估的方法。该方法假设测验分数呈贝塔二项分布,这一假设在许多情况下都被证明是合理的。有了这一假设,该方法只需要样本总分的均值和标准差(或等同于正确率分数的均值和标准差),这与使用信度估计值来达到类似目的的方法截然不同。每个样本都有两个估计参数:平均难度和过度分散参数,后者可解释为测验检测个体差异的能力。拟议的双变量元分析方法(随机或固定效应)可同时汇集这两个参数,并进行元回归。双变量集合产生了平均难度参数和过度分散参数的样本间相关性。作为附带产品,还可获得可靠性估计值,在没有其他估计值的情况下,可利用可靠性估计值来消除可靠性不足的相关系数。我们提供了一个工作示例来说明该方法,并提供了 R 代码。(PsycInfo 数据库记录 (c) 2024 APA,保留所有权利)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Psychological methods
Psychological methods PSYCHOLOGY, MULTIDISCIPLINARY-
CiteScore
13.10
自引率
7.10%
发文量
159
期刊介绍: Psychological Methods is devoted to the development and dissemination of methods for collecting, analyzing, understanding, and interpreting psychological data. Its purpose is the dissemination of innovations in research design, measurement, methodology, and quantitative and qualitative analysis to the psychological community; its further purpose is to promote effective communication about related substantive and methodological issues. The audience is expected to be diverse and to include those who develop new procedures, those who are responsible for undergraduate and graduate training in design, measurement, and statistics, as well as those who employ those procedures in research.
期刊最新文献
A guided tutorial on linear mixed-effects models for the analysis of accuracies and response times in experiments with fully crossed design. Bayes factors for logistic (mixed-effect) models. Better power by design: Permuted-subblock randomization boosts power in repeated-measures experiments. Building a simpler moderated nonlinear factor analysis model with Markov Chain Monte Carlo estimation. Definition and identification of causal ratio effects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1