Human apo-metallothionein 1a is not a random coil: Evidence from guanidinium chloride, high temperature, and acidic pH unfolding studies

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-03-13 DOI:10.1016/j.bbapap.2024.141010
Natalie C. Korkola, Martin J. Stillman
{"title":"Human apo-metallothionein 1a is not a random coil: Evidence from guanidinium chloride, high temperature, and acidic pH unfolding studies","authors":"Natalie C. Korkola,&nbsp;Martin J. Stillman","doi":"10.1016/j.bbapap.2024.141010","DOIUrl":null,"url":null,"abstract":"<div><p>The structures of apo-metallothioneins (apo-MTs) have been relatively elusive due to their fluxional, disordered state which has been difficult to characterize. However, intrinsically disordered protein (IDP) structures are rather diverse, which raises questions about where the structure of apo-MTs fit into the protein structural spectrum. In this paper, the unfolding transitions of apo-MT1a are discussed with respect to the effect of the chemical denaturant GdmCl, temperature conditions, and pH environment. Cysteine modification in combination with electrospray ionization mass spectrometry was used to probe the unfolding transition of apo-MT1a in terms of cysteine exposure. Circular dichroism spectroscopy was also used to monitor the change in secondary structure as a function of GdmCl concentration. For both of these techniques, cooperative unfolding was observed, suggesting that apo-MT1a is not a random coil. More GdmCl was required to unfold the protein backbone than to expose the cysteines, indicating that cysteine exposure is likely an early step in the unfolding of apo-MT1a. MD simulations complement the experimental results, suggesting that apo-MT1a adopts a more compact structure than expected for a random coil. Overall, these results provide further insight into the intrinsically disordered structure of apo-MT.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1570963924000177/pdfft?md5=1e2b99a81d2977a21cf2abac24f96759&pid=1-s2.0-S1570963924000177-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1570963924000177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

The structures of apo-metallothioneins (apo-MTs) have been relatively elusive due to their fluxional, disordered state which has been difficult to characterize. However, intrinsically disordered protein (IDP) structures are rather diverse, which raises questions about where the structure of apo-MTs fit into the protein structural spectrum. In this paper, the unfolding transitions of apo-MT1a are discussed with respect to the effect of the chemical denaturant GdmCl, temperature conditions, and pH environment. Cysteine modification in combination with electrospray ionization mass spectrometry was used to probe the unfolding transition of apo-MT1a in terms of cysteine exposure. Circular dichroism spectroscopy was also used to monitor the change in secondary structure as a function of GdmCl concentration. For both of these techniques, cooperative unfolding was observed, suggesting that apo-MT1a is not a random coil. More GdmCl was required to unfold the protein backbone than to expose the cysteines, indicating that cysteine exposure is likely an early step in the unfolding of apo-MT1a. MD simulations complement the experimental results, suggesting that apo-MT1a adopts a more compact structure than expected for a random coil. Overall, these results provide further insight into the intrinsically disordered structure of apo-MT.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人类载脂蛋白-金属硫蛋白 1a 并非随机线圈:来自氯化胍、高温和酸性 pH 展开研究的证据。
由于载脂蛋白(apo-MTs)的通量无序状态难以表征,因此其结构一直比较难以捉摸。然而,固有无序蛋白(IDP)结构是相当多样化的,这就提出了关于apo-MTs结构在蛋白质结构谱中的位置问题。本文结合化学变性剂 GdmCl、温度条件和 pH 环境的影响,讨论了 apo-MT1a 的展开转变。半胱氨酸修饰与电喷雾离子化质谱相结合,从半胱氨酸暴露的角度探究了apo-MT1a的解折转变。此外,还利用环二色性光谱监测二级结构随 GdmCl 浓度变化的情况。在这两种技术中,都观察到了合作性解折,表明apo-MT1a 并非随机线圈。与暴露半胱氨酸相比,蛋白质骨架的展开需要更多的 GdmCl,这表明半胱氨酸暴露可能是 apo-MT1a 展开的早期步骤。MD 模拟与实验结果相辅相成,表明 apo-MT1a 采用了比随机线圈预期更紧凑的结构。总之,这些结果进一步揭示了apo-MT的内在无序结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1