{"title":"Spectral clustering with variance information for group structure estimation in panel data","authors":"Lu Yu , Jiaying Gu , Stanislav Volgushev","doi":"10.1016/j.jeconom.2024.105709","DOIUrl":null,"url":null,"abstract":"<div><p>Consider a panel data setting where repeated observations on individuals are available. Often it is reasonable to assume that there exist groups of individuals that share similar effects of observed characteristics, but the grouping is typically unknown in advance. We first conduct a local analysis which reveals that the variances of the individual coefficient estimates contain useful information for the estimation of group structure. We then propose a method to estimate unobserved groupings for general panel data models that explicitly accounts for the variance information. Our proposed method remains computationally feasible with a large number of individuals and/or repeated measurements on each individual. The developed ideas can also be applied even when individual-level data are not available and only parameter estimates together with some quantification of estimation uncertainty are given to the researcher. A thorough simulation study demonstrates superior performance of our method than existing methods and we apply the method to two empirical applications.</p></div>","PeriodicalId":15629,"journal":{"name":"Journal of Econometrics","volume":"241 1","pages":"Article 105709"},"PeriodicalIF":9.9000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Econometrics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304407624000551","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Consider a panel data setting where repeated observations on individuals are available. Often it is reasonable to assume that there exist groups of individuals that share similar effects of observed characteristics, but the grouping is typically unknown in advance. We first conduct a local analysis which reveals that the variances of the individual coefficient estimates contain useful information for the estimation of group structure. We then propose a method to estimate unobserved groupings for general panel data models that explicitly accounts for the variance information. Our proposed method remains computationally feasible with a large number of individuals and/or repeated measurements on each individual. The developed ideas can also be applied even when individual-level data are not available and only parameter estimates together with some quantification of estimation uncertainty are given to the researcher. A thorough simulation study demonstrates superior performance of our method than existing methods and we apply the method to two empirical applications.
期刊介绍:
The Journal of Econometrics serves as an outlet for important, high quality, new research in both theoretical and applied econometrics. The scope of the Journal includes papers dealing with identification, estimation, testing, decision, and prediction issues encountered in economic research. Classical Bayesian statistics, and machine learning methods, are decidedly within the range of the Journal''s interests. The Annals of Econometrics is a supplement to the Journal of Econometrics.