{"title":"A robust ultrasensitive transcriptional switch in noisy cellular environments.","authors":"Eui Min Jeong, Jae Kyoung Kim","doi":"10.1038/s41540-024-00356-2","DOIUrl":null,"url":null,"abstract":"<p><p>Ultrasensitive transcriptional switches enable sharp transitions between transcriptional on and off states and are essential for cells to respond to environmental cues with high fidelity. However, conventional switches, which rely on direct repressor-DNA binding, are extremely noise-sensitive, leading to unintended changes in gene expression. Here, through model simulations and analysis, we discovered that an alternative design combining three indirect transcriptional repression mechanisms, sequestration, blocking, and displacement, can generate a noise-resilient ultrasensitive switch. Although sequestration alone can generate an ultrasensitive switch, it remains sensitive to noise because the unintended transcriptional state induced by noise persists for long periods. However, by jointly utilizing blocking and displacement, these noise-induced transitions can be rapidly restored to the original transcriptional state. Because this transcriptional switch is effective in noisy cellular contexts, it goes beyond previous synthetic transcriptional switches, making it particularly valuable for robust synthetic system design. Our findings also provide insights into the evolution of robust ultrasensitive switches in cells. Specifically, the concurrent use of seemingly redundant indirect repression mechanisms in diverse biological systems appears to be a strategy to achieve noise-resilience of ultrasensitive switches.</p>","PeriodicalId":19345,"journal":{"name":"NPJ Systems Biology and Applications","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10944533/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Systems Biology and Applications","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41540-024-00356-2","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Ultrasensitive transcriptional switches enable sharp transitions between transcriptional on and off states and are essential for cells to respond to environmental cues with high fidelity. However, conventional switches, which rely on direct repressor-DNA binding, are extremely noise-sensitive, leading to unintended changes in gene expression. Here, through model simulations and analysis, we discovered that an alternative design combining three indirect transcriptional repression mechanisms, sequestration, blocking, and displacement, can generate a noise-resilient ultrasensitive switch. Although sequestration alone can generate an ultrasensitive switch, it remains sensitive to noise because the unintended transcriptional state induced by noise persists for long periods. However, by jointly utilizing blocking and displacement, these noise-induced transitions can be rapidly restored to the original transcriptional state. Because this transcriptional switch is effective in noisy cellular contexts, it goes beyond previous synthetic transcriptional switches, making it particularly valuable for robust synthetic system design. Our findings also provide insights into the evolution of robust ultrasensitive switches in cells. Specifically, the concurrent use of seemingly redundant indirect repression mechanisms in diverse biological systems appears to be a strategy to achieve noise-resilience of ultrasensitive switches.
期刊介绍:
npj Systems Biology and Applications is an online Open Access journal dedicated to publishing the premier research that takes a systems-oriented approach. The journal aims to provide a forum for the presentation of articles that help define this nascent field, as well as those that apply the advances to wider fields. We encourage studies that integrate, or aid the integration of, data, analyses and insight from molecules to organisms and broader systems. Important areas of interest include not only fundamental biological systems and drug discovery, but also applications to health, medical practice and implementation, big data, biotechnology, food science, human behaviour, broader biological systems and industrial applications of systems biology.
We encourage all approaches, including network biology, application of control theory to biological systems, computational modelling and analysis, comprehensive and/or high-content measurements, theoretical, analytical and computational studies of system-level properties of biological systems and computational/software/data platforms enabling such studies.