Predicting preferred motorcycle riding postures to support human factors/ergonomic trade-off analyses within a multi-objective optimisation-based digital human model.
{"title":"Predicting preferred motorcycle riding postures to support human factors/ergonomic trade-off analyses within a multi-objective optimisation-based digital human model.","authors":"Justin B Davidson, Dr Steven L Fischer","doi":"10.1080/00140139.2024.2329694","DOIUrl":null,"url":null,"abstract":"<p><p>Digital human models (DHM) can predict how users might interact with new vehicle geometry during early-stage design, an important precursor to conducting trade-off analyses. However, predicting human postures requires assumptions about which performance criteria best predict realistic postures. Focusing on the design of motorcycles, we do not know what performance criteria drive preferred riding postures. Addressing this gap, we aimed to identify which performance criteria and corresponding weightings best predicted preferred motorcycle riding postures when using a DHM. To address our aim, we surveyed the literature to find experimental data specifying joint angles that correspond to preferred riding postures. We then deployed a response surface methodology to determine which performance criteria and weightings optimally predicted the preferred riding postures when using a DHM. Weighting the minimisation of the discomfort performance criteria (an aggregate of joint range of motion, displacement from neutral and joint torque) best predicted preferred motorcycle riding postures.</p>","PeriodicalId":50503,"journal":{"name":"Ergonomics","volume":" ","pages":"359-373"},"PeriodicalIF":2.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ergonomics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/00140139.2024.2329694","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/18 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0
Abstract
Digital human models (DHM) can predict how users might interact with new vehicle geometry during early-stage design, an important precursor to conducting trade-off analyses. However, predicting human postures requires assumptions about which performance criteria best predict realistic postures. Focusing on the design of motorcycles, we do not know what performance criteria drive preferred riding postures. Addressing this gap, we aimed to identify which performance criteria and corresponding weightings best predicted preferred motorcycle riding postures when using a DHM. To address our aim, we surveyed the literature to find experimental data specifying joint angles that correspond to preferred riding postures. We then deployed a response surface methodology to determine which performance criteria and weightings optimally predicted the preferred riding postures when using a DHM. Weighting the minimisation of the discomfort performance criteria (an aggregate of joint range of motion, displacement from neutral and joint torque) best predicted preferred motorcycle riding postures.
期刊介绍:
Ergonomics, also known as human factors, is the scientific discipline that seeks to understand and improve human interactions with products, equipment, environments and systems. Drawing upon human biology, psychology, engineering and design, Ergonomics aims to develop and apply knowledge and techniques to optimise system performance, whilst protecting the health, safety and well-being of individuals involved. The attention of ergonomics extends across work, leisure and other aspects of our daily lives.
The journal Ergonomics is an international refereed publication, with a 60 year tradition of disseminating high quality research. Original submissions, both theoretical and applied, are invited from across the subject, including physical, cognitive, organisational and environmental ergonomics. Papers reporting the findings of research from cognate disciplines are also welcome, where these contribute to understanding equipment, tasks, jobs, systems and environments and the corresponding needs, abilities and limitations of people.
All published research articles in this journal have undergone rigorous peer review, based on initial editor screening and anonymous refereeing by independent expert referees.