{"title":"Creep behavior and damage constitutive model of sandstone: an experimental study on seepage-load coupling","authors":"Yongqi Li, Yang Song, Da Huang","doi":"10.1007/s11043-024-09681-9","DOIUrl":null,"url":null,"abstract":"<div><p>Triaxial creep tests of sandstone under different seepage pressures were carried out to research the effect of seepage on the rheological laws of sandstone. The effect of seepage pressure on the rheological properties of rocks is investigated by analyzing the creep deformation, creep rate and permeability of sandstones. The creep rate curve is related to the seepage pressure and the axial load level. At a constant load level, the change in the creep curve mainly shows a trend of rapid decline, followed by stability for a long time, and finally a rapid increase under the next load level, which is linked to the variables of axial strain, radial strain, and volumetric strain of the sandstone. Permeability, which can reflect the hydration effect of rocks, exhibits a typical three-phase characteristic under seepage pressure: decreasing phase, a steady phase, and an increasing phase. For the damage creep model, firstly, the traditional Nishihara model is modified based on the fractional order theory, and the coupling model reflecting the whole creep process of sandstone is obtained by connecting the acceleration elements describing the accelerating phase of the rock in series, and finally, it is shown through the validation that the model can describe the whole creep process of sandstone under the seepage pressure. This study can provide theoretical support for the stability analysis of slope engineering under seepage conditions.</p></div>","PeriodicalId":698,"journal":{"name":"Mechanics of Time-Dependent Materials","volume":"28 4","pages":"2751 - 2770"},"PeriodicalIF":2.1000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics of Time-Dependent Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11043-024-09681-9","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0
Abstract
Triaxial creep tests of sandstone under different seepage pressures were carried out to research the effect of seepage on the rheological laws of sandstone. The effect of seepage pressure on the rheological properties of rocks is investigated by analyzing the creep deformation, creep rate and permeability of sandstones. The creep rate curve is related to the seepage pressure and the axial load level. At a constant load level, the change in the creep curve mainly shows a trend of rapid decline, followed by stability for a long time, and finally a rapid increase under the next load level, which is linked to the variables of axial strain, radial strain, and volumetric strain of the sandstone. Permeability, which can reflect the hydration effect of rocks, exhibits a typical three-phase characteristic under seepage pressure: decreasing phase, a steady phase, and an increasing phase. For the damage creep model, firstly, the traditional Nishihara model is modified based on the fractional order theory, and the coupling model reflecting the whole creep process of sandstone is obtained by connecting the acceleration elements describing the accelerating phase of the rock in series, and finally, it is shown through the validation that the model can describe the whole creep process of sandstone under the seepage pressure. This study can provide theoretical support for the stability analysis of slope engineering under seepage conditions.
期刊介绍:
Mechanics of Time-Dependent Materials accepts contributions dealing with the time-dependent mechanical properties of solid polymers, metals, ceramics, concrete, wood, or their composites. It is recognized that certain materials can be in the melt state as function of temperature and/or pressure. Contributions concerned with fundamental issues relating to processing and melt-to-solid transition behaviour are welcome, as are contributions addressing time-dependent failure and fracture phenomena. Manuscripts addressing environmental issues will be considered if they relate to time-dependent mechanical properties.
The journal promotes the transfer of knowledge between various disciplines that deal with the properties of time-dependent solid materials but approach these from different angles. Among these disciplines are: Mechanical Engineering, Aerospace Engineering, Chemical Engineering, Rheology, Materials Science, Polymer Physics, Design, and others.