Nonlinear relaxation behavior and competing aging mechanisms in GAP-based propellants under thermal aging

IF 2.3 4区 材料科学 Q2 MATERIALS SCIENCE, CHARACTERIZATION & TESTING Mechanics of Time-Dependent Materials Pub Date : 2025-02-17 DOI:10.1007/s11043-025-09764-1
Jiangtao Wang, Guanglong Zhang, Li Yang, Xiangyang Liu, Ningfei Wang
{"title":"Nonlinear relaxation behavior and competing aging mechanisms in GAP-based propellants under thermal aging","authors":"Jiangtao Wang,&nbsp;Guanglong Zhang,&nbsp;Li Yang,&nbsp;Xiangyang Liu,&nbsp;Ningfei Wang","doi":"10.1007/s11043-025-09764-1","DOIUrl":null,"url":null,"abstract":"<div><p>Glycidyl azide polymer (GAP)-based propellants, known for their high energy efficiency, exhibit unique nonlinear variations in viscoelastic behavior during thermal aging, which is distinct from the monotonic trends observed in traditional propellants. This paper investigates the relaxation behavior of GAP-based propellants subjected to thermal aging at 60 °C. Nuclear Magnetic Resonance and high-performance liquid chromatography analyses are conducted to reveal the underlying mechanisms driving the nonlinear relaxation response. The aging process is classified into three distinct stages: an initial phase dominated by post-curing reactions, followed by competing effects from crosslink network scission, and plasticizer degradation. These competing mechanisms affect the relaxation through microscopic changes in free volume, resulting in complex viscoelastic responses. A predictive model is developed for the relaxation modulus to take into account of these aging mechanisms, with capability to capture the nonlinear fluctuations in the aging shift factor. The proposed model provides accurate predictions of relaxation behavior during thermal aging, including the long-term performance of GAP-based propellants.</p></div>","PeriodicalId":698,"journal":{"name":"Mechanics of Time-Dependent Materials","volume":"29 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics of Time-Dependent Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11043-025-09764-1","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

Abstract

Glycidyl azide polymer (GAP)-based propellants, known for their high energy efficiency, exhibit unique nonlinear variations in viscoelastic behavior during thermal aging, which is distinct from the monotonic trends observed in traditional propellants. This paper investigates the relaxation behavior of GAP-based propellants subjected to thermal aging at 60 °C. Nuclear Magnetic Resonance and high-performance liquid chromatography analyses are conducted to reveal the underlying mechanisms driving the nonlinear relaxation response. The aging process is classified into three distinct stages: an initial phase dominated by post-curing reactions, followed by competing effects from crosslink network scission, and plasticizer degradation. These competing mechanisms affect the relaxation through microscopic changes in free volume, resulting in complex viscoelastic responses. A predictive model is developed for the relaxation modulus to take into account of these aging mechanisms, with capability to capture the nonlinear fluctuations in the aging shift factor. The proposed model provides accurate predictions of relaxation behavior during thermal aging, including the long-term performance of GAP-based propellants.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
热老化下gap基推进剂的非线性松弛行为及竞争老化机制
叠氮缩水甘油酯聚合物(GAP)基推进剂以其高能效而闻名,但在热老化过程中表现出独特的非线性粘弹性变化,这与传统推进剂的单调趋势不同。研究了gap基推进剂在60℃热老化条件下的弛豫行为。核磁共振和高效液相色谱分析揭示了驱动非线性松弛响应的潜在机制。老化过程分为三个不同的阶段:由固化后反应主导的初始阶段,其次是交联网络断裂和增塑剂降解的竞争效应。这些相互竞争的机制通过自由体积的微观变化影响弛豫,导致复杂的粘弹性响应。为了考虑这些老化机制,建立了松弛模量的预测模型,并具有捕获老化位移因子非线性波动的能力。该模型提供了热老化过程中松弛行为的准确预测,包括基于gap的推进剂的长期性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Mechanics of Time-Dependent Materials
Mechanics of Time-Dependent Materials 工程技术-材料科学:表征与测试
CiteScore
4.90
自引率
8.00%
发文量
47
审稿时长
>12 weeks
期刊介绍: Mechanics of Time-Dependent Materials accepts contributions dealing with the time-dependent mechanical properties of solid polymers, metals, ceramics, concrete, wood, or their composites. It is recognized that certain materials can be in the melt state as function of temperature and/or pressure. Contributions concerned with fundamental issues relating to processing and melt-to-solid transition behaviour are welcome, as are contributions addressing time-dependent failure and fracture phenomena. Manuscripts addressing environmental issues will be considered if they relate to time-dependent mechanical properties. The journal promotes the transfer of knowledge between various disciplines that deal with the properties of time-dependent solid materials but approach these from different angles. Among these disciplines are: Mechanical Engineering, Aerospace Engineering, Chemical Engineering, Rheology, Materials Science, Polymer Physics, Design, and others.
期刊最新文献
Three-dimensional fractional viscoelastic constitutive modeling and numerical implementation using the \(L_{1}\) time-discretization scheme Dual modeling of unsteady radiative non-Newtonian fluid flow with Biot boundary conditions using novel time-dependent solutions Damage evolution on post-peak of rocks under freeze–thaw conditions Macroscopic and microscopic analysis of shear creep-impact damage evolution in anchored jointed rock masses under constant normal stiffness boundary conditions Predictive modeling of age-dependent strength in concrete incorporating GGBS, silica fume, and phosphogypsum using XGBoost, Random Forest, and Weibull analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1