Local coordination and electronic interactions of Pd/MXene via dual-atom codoping with superior durability for efficient electrocatalytic ethanol oxidation

IF 19.5 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Carbon Energy Pub Date : 2024-03-15 DOI:10.1002/cey2.443
Zhangxin Chen, Fan Jing, Minghui Luo, Xiaohui Wu, Haichang Fu, Shengwei Xiao, Binbin Yu, Dan Chen, Xianqiang Xiong, Yanxian Jin
{"title":"Local coordination and electronic interactions of Pd/MXene via dual-atom codoping with superior durability for efficient electrocatalytic ethanol oxidation","authors":"Zhangxin Chen,&nbsp;Fan Jing,&nbsp;Minghui Luo,&nbsp;Xiaohui Wu,&nbsp;Haichang Fu,&nbsp;Shengwei Xiao,&nbsp;Binbin Yu,&nbsp;Dan Chen,&nbsp;Xianqiang Xiong,&nbsp;Yanxian Jin","doi":"10.1002/cey2.443","DOIUrl":null,"url":null,"abstract":"<p>Catalyst design relies heavily on electronic metal-support interactions, but the metal-support interface with an uncontrollable electronic or coordination environment makes it challenging. Herein, we outline a promising approach for the rational design of catalysts involving heteroatoms as anchors for Pd nanoparticles for ethanol oxidation reaction (EOR) catalysis. The doped B and N atoms from dimethylamine borane (DB) occupy the position of the Ti<sub>3</sub>C<sub>2</sub> lattice to anchor the supported Pd nanoparticles. The electrons transfer from the support to B atoms, and then to the metal Pd to form a stable electronic center. A strong electronic interaction can be produced and the d-band center can be shifted down, driving Pd into the dominant metallic state and making Pd nanoparticles deposit uniformly on the support. As-obtained Pd/DB–Ti<sub>3</sub>C<sub>2</sub> exhibits superior durability to its counterpart (∼14.6% retention) with 91.1% retention after 2000 cycles, placing it among the top single metal anodic catalysts. Further, in situ Raman and density functional theory computations confirm that Pd/DB–Ti<sub>3</sub>C<sub>2</sub> is capable of dehydrogenating ethanol at low reaction energies.</p>","PeriodicalId":33706,"journal":{"name":"Carbon Energy","volume":"6 8","pages":""},"PeriodicalIF":19.5000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cey2.443","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Energy","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cey2.443","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Catalyst design relies heavily on electronic metal-support interactions, but the metal-support interface with an uncontrollable electronic or coordination environment makes it challenging. Herein, we outline a promising approach for the rational design of catalysts involving heteroatoms as anchors for Pd nanoparticles for ethanol oxidation reaction (EOR) catalysis. The doped B and N atoms from dimethylamine borane (DB) occupy the position of the Ti3C2 lattice to anchor the supported Pd nanoparticles. The electrons transfer from the support to B atoms, and then to the metal Pd to form a stable electronic center. A strong electronic interaction can be produced and the d-band center can be shifted down, driving Pd into the dominant metallic state and making Pd nanoparticles deposit uniformly on the support. As-obtained Pd/DB–Ti3C2 exhibits superior durability to its counterpart (∼14.6% retention) with 91.1% retention after 2000 cycles, placing it among the top single metal anodic catalysts. Further, in situ Raman and density functional theory computations confirm that Pd/DB–Ti3C2 is capable of dehydrogenating ethanol at low reaction energies.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过双原子偶联掺杂实现钯/二甲苯的局部配位和电子相互作用,为乙醇的高效电催化氧化提供卓越的耐久性能
催化剂的设计在很大程度上依赖于电子金属与支撑物之间的相互作用,但金属与支撑物之间的界面具有不可控的电子或配位环境,这使得催化剂的设计极具挑战性。在此,我们概述了一种很有前景的催化剂合理设计方法,它将杂原子作为钯纳米颗粒的锚,用于乙醇氧化反应(EOR)催化。二甲胺硼烷(DB)中掺杂的 B 原子和 N 原子占据了 Ti3C2 晶格的位置,从而锚定了支撑的钯纳米粒子。电子从支撑物转移到 B 原子,然后再转移到金属钯,形成一个稳定的电子中心。这样就能产生强烈的电子相互作用,并使 d 波段中心下移,从而使 Pd 进入主导金属态,并使 Pd 纳米粒子均匀地沉积在支撑物上。获得的 Pd/DB-Ti3C2 比同类催化剂具有更高的耐久性(保留率为 14.6%),2000 次循环后的保留率为 91.1%,在单一金属阳极催化剂中名列前茅。此外,原位拉曼和密度泛函理论计算证实,Pd/DB-Ti3C2 能够以较低的反应能量使乙醇脱氢。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Carbon Energy
Carbon Energy Multiple-
CiteScore
25.70
自引率
10.70%
发文量
116
审稿时长
4 weeks
期刊介绍: Carbon Energy is an international journal that focuses on cutting-edge energy technology involving carbon utilization and carbon emission control. It provides a platform for researchers to communicate their findings and critical opinions and aims to bring together the communities of advanced material and energy. The journal covers a broad range of energy technologies, including energy storage, photocatalysis, electrocatalysis, photoelectrocatalysis, and thermocatalysis. It covers all forms of energy, from conventional electric and thermal energy to those that catalyze chemical and biological transformations. Additionally, Carbon Energy promotes new technologies for controlling carbon emissions and the green production of carbon materials. The journal welcomes innovative interdisciplinary research with wide impact. It is indexed in various databases, including Advanced Technologies & Aerospace Collection/Database, Biological Science Collection/Database, CAS, DOAJ, Environmental Science Collection/Database, Web of Science and Technology Collection.
期刊最新文献
Issue Information Cover Image, Volume 6, Number 10, October 2024 Back Cover Image, Volume 6, Number 10, October 2024 Interface and doping engineering of V2C-MXene-based electrocatalysts for enhanced electrocatalysis of overall water splitting Issue Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1