Back Cover Image, Volume 7, Number 1, January 2025

IF 19.5 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Carbon Energy Pub Date : 2025-01-24 DOI:10.1002/cey2.723
Myeong Hoon Jeong, Eun Jin Bae, Byoungwook Park, Jong-Woon Ha, Mijeong Han, Young Hun Kang
{"title":"Back Cover Image, Volume 7, Number 1, January 2025","authors":"Myeong Hoon Jeong,&nbsp;Eun Jin Bae,&nbsp;Byoungwook Park,&nbsp;Jong-Woon Ha,&nbsp;Mijeong Han,&nbsp;Young Hun Kang","doi":"10.1002/cey2.723","DOIUrl":null,"url":null,"abstract":"<p><b><i>Back cover image</i></b>: 3D porous thermoelectric (TE) materials have emerged as a potential option for improving the output power of thermoelectric generators (TEGs). However, their brittle fracture and low mechanical strength of 3D porous TE materials have limited their application to TEGs. In article number CEY2.650, a novel hybrid TE material comprising BiSbTe (BST) nanoparticles embedded in carbon nanotube (CNT) foam is designed. They generate junctions by clustering with CNTs, creating a conductive network that enhances charge transport and mechanical strengthens the CNT foam. These findings successfully demonstrate that a CNT/BST foam with high TE and mechanical performance holds significant promise for flexible and durable TE generators.\n\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":33706,"journal":{"name":"Carbon Energy","volume":"7 1","pages":""},"PeriodicalIF":19.5000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cey2.723","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Energy","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cey2.723","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Back cover image: 3D porous thermoelectric (TE) materials have emerged as a potential option for improving the output power of thermoelectric generators (TEGs). However, their brittle fracture and low mechanical strength of 3D porous TE materials have limited their application to TEGs. In article number CEY2.650, a novel hybrid TE material comprising BiSbTe (BST) nanoparticles embedded in carbon nanotube (CNT) foam is designed. They generate junctions by clustering with CNTs, creating a conductive network that enhances charge transport and mechanical strengthens the CNT foam. These findings successfully demonstrate that a CNT/BST foam with high TE and mechanical performance holds significant promise for flexible and durable TE generators.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Carbon Energy
Carbon Energy Multiple-
CiteScore
25.70
自引率
10.70%
发文量
116
审稿时长
4 weeks
期刊介绍: Carbon Energy is an international journal that focuses on cutting-edge energy technology involving carbon utilization and carbon emission control. It provides a platform for researchers to communicate their findings and critical opinions and aims to bring together the communities of advanced material and energy. The journal covers a broad range of energy technologies, including energy storage, photocatalysis, electrocatalysis, photoelectrocatalysis, and thermocatalysis. It covers all forms of energy, from conventional electric and thermal energy to those that catalyze chemical and biological transformations. Additionally, Carbon Energy promotes new technologies for controlling carbon emissions and the green production of carbon materials. The journal welcomes innovative interdisciplinary research with wide impact. It is indexed in various databases, including Advanced Technologies & Aerospace Collection/Database, Biological Science Collection/Database, CAS, DOAJ, Environmental Science Collection/Database, Web of Science and Technology Collection.
期刊最新文献
Issue Information Cover Image, Volume 7, Number 1, January 2025 Back Cover Image, Volume 7, Number 1, January 2025 Research advances of metal fluoride for energy conversion and storage Hierarchically structured, Janus optical nanoengineered wastepaper for switchable radiative cooling/heating
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1