Evolutionary prediction of novel biphenylene networks as an anode material for lithium and potassium-ion batteries

Adewale Hammed Pasanaje, Nirpendra Singh
{"title":"Evolutionary prediction of novel biphenylene networks as an anode material for lithium and potassium-ion batteries","authors":"Adewale Hammed Pasanaje, Nirpendra Singh","doi":"10.1016/j.nanoms.2024.02.008","DOIUrl":null,"url":null,"abstract":"The discovery of novel materials with compelling properties is more accessible with the help of advanced computational algorithms. Recent experimental synthesis of the biphenylene network (C) motivated us to discover new BN-doped biphenylene networks (CBN, CBN, and BN) and their applications in Li(K)-ion batteries using an evolutionary algorithm and the first-principles calculations. The thermodynamic, thermal, and mechanical stability calculations and decomposition energy suggest the experimental synthesis of predicted biphenylene networks. Adding BN in the biphenylene networks shows a transition from metal to semimetal to semiconductor. The BN biphenylene network shows an HSE06 band gap of 3.06 ​eV, smaller than -BN. The CBN and CBN biphenylene networks offer Li(K) adsorption energy of −0.56 ​eV (−0.81 ​eV) and −0.14 ​eV (−0.28 ​eV), respectively, with a low diffusion barrier of 178 ​meV (58 ​meV) and 251 ​meV (79 ​meV), and a large diffusion constant of 8.50 ​× ​10 (8.78 ​× ​10) and 5.33 ​× ​10 (4.12 ​× ​10), respectively. The calculated Li(K) theoretical capacity of CBN and CBN biphenylene networks is 940.21 ​mA ​h ​g (899.01 ​mA ​h ​g) and 768.08 ​mA ​h ​g (808.47 ​mA ​h ​g), with a low open circuit voltage of 0.34 ​V (0.23 ​V), and 0.17 ​V (0.13 ​V), resulting in very high energy density of 2576.18 ​mW ​h ​g (2445.31 ​mW ​h ​g) and 2181.35 ​mW ​h ​g (2263.72 ​mW ​h ​g), respectively. Only a slight volume change of 1.6% confirms the robustness of BN-doped carbon-based biphenylene networks. Our findings present novel 2D BN-doped biphenylene networks and a pathway toward their applications in metal-ion batteries.","PeriodicalId":501090,"journal":{"name":"Nano Materials Science","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Materials Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.nanoms.2024.02.008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The discovery of novel materials with compelling properties is more accessible with the help of advanced computational algorithms. Recent experimental synthesis of the biphenylene network (C) motivated us to discover new BN-doped biphenylene networks (CBN, CBN, and BN) and their applications in Li(K)-ion batteries using an evolutionary algorithm and the first-principles calculations. The thermodynamic, thermal, and mechanical stability calculations and decomposition energy suggest the experimental synthesis of predicted biphenylene networks. Adding BN in the biphenylene networks shows a transition from metal to semimetal to semiconductor. The BN biphenylene network shows an HSE06 band gap of 3.06 ​eV, smaller than -BN. The CBN and CBN biphenylene networks offer Li(K) adsorption energy of −0.56 ​eV (−0.81 ​eV) and −0.14 ​eV (−0.28 ​eV), respectively, with a low diffusion barrier of 178 ​meV (58 ​meV) and 251 ​meV (79 ​meV), and a large diffusion constant of 8.50 ​× ​10 (8.78 ​× ​10) and 5.33 ​× ​10 (4.12 ​× ​10), respectively. The calculated Li(K) theoretical capacity of CBN and CBN biphenylene networks is 940.21 ​mA ​h ​g (899.01 ​mA ​h ​g) and 768.08 ​mA ​h ​g (808.47 ​mA ​h ​g), with a low open circuit voltage of 0.34 ​V (0.23 ​V), and 0.17 ​V (0.13 ​V), resulting in very high energy density of 2576.18 ​mW ​h ​g (2445.31 ​mW ​h ​g) and 2181.35 ​mW ​h ​g (2263.72 ​mW ​h ​g), respectively. Only a slight volume change of 1.6% confirms the robustness of BN-doped carbon-based biphenylene networks. Our findings present novel 2D BN-doped biphenylene networks and a pathway toward their applications in metal-ion batteries.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
作为锂离子和钾离子电池负极材料的新型联苯网络的进化预测
在先进计算算法的帮助下,更容易发现具有引人注目特性的新型材料。最近联苯网络(C)的实验合成促使我们利用进化算法和第一原理计算发现了新的掺杂 BN 的联苯网络(CBN、CBN 和 BN)及其在锂离子电池中的应用。热力学、热和机械稳定性计算以及分解能表明,可以通过实验合成所预测的联苯网络。在联苯网络中加入 BN 后,会出现从金属到半金属再到半导体的转变。BN 联苯网络的 HSE06 带隙为 3.06 eV,小于 -BN。CBN 和 CBN 联苯网络对 Li(K) 的吸附能分别为 -0.56 eV (-0.81 eV) 和 -0.14 eV (-0.28 eV),扩散势垒分别为 178 meV (58 meV) 和 251 meV (79 meV),扩散常数分别为 8.50 × 10 (8.78 × 10) 和 5.33 × 10 (4.12 × 10)。计算得出的 CBN 和 CBN 联苯网络的 Li(K) 理论容量分别为 940.21 mA h g(899.01 mA h g)和 768.08 mA h g(808.47 mA h g),低开路电压为 0.34 V (0.23 V) 和 0.17 V (0.13 V),能量密度分别高达 2576.18 mW h g (2445.31 mW h g) 和 2181.35 mW h g (2263.72 mW h g)。仅 1.6% 的微小体积变化证实了掺杂 BN 的碳基联苯网络的稳健性。我们的研究结果展示了新型二维 BN 掺杂联苯网络及其在金属离子电池中的应用途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Bursting and transforming MOF into n-type ZnO and p-type NiO based heterostructure for supercapacitive energy storage Manipulating polarization attenuation in NbS2–NiS2 nanoflowers through homogeneous heterophase interface engineering toward microwave absorption with shifted frequency bands Ionogels as advanced materials for overcoming challenges in wound healing and drug delivery Advanced Ca-doped MOF nanocarriers for Co-delivery of Doxorubicin/pCRISPR A review on catalyst convergence: Unleashing the potential of MXenes for CO2 electrochemical reduction into high-value liquid product
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1