Soumya B. Narendranath, N. P. Nimisha, S. Namitha, K. Khadheejath Shabana, N. J. Venkatesha, Chamundi P. Jijil, A. Sakthivel
{"title":"Ruthenium loaded moderate acidic SAPO-11 for hydrogenation of aromatic derivatives","authors":"Soumya B. Narendranath, N. P. Nimisha, S. Namitha, K. Khadheejath Shabana, N. J. Venkatesha, Chamundi P. Jijil, A. Sakthivel","doi":"10.1007/s10934-024-01572-1","DOIUrl":null,"url":null,"abstract":"<div><p>Hydrotreating of lignin molecules by heterogeneous catalysts has been a significant area of research in recent eras. The current study describes the hydrotreatment of lignin-derived phenol, <i>m</i>-cresol, over ruthenium-incorporated SAPO-11. The developed catalyst hydrogenates <i>m</i>-cresol completely at 160 °C and 10 bar of hydrogen pressure, yielding 22% methyl cyclohexane, 22% methyl cyclohexanol, and 55% methyl cyclohexanone. Temperature-programmed reduction (TPR) studies using hydrogen as probe molecules show that metallic-ruthenium species exist on the SAPO-11. The desorption profile at 147–215 °C reveals the formation of dispersed metallic ruthenium on SAPO-11. The above observation is consistent with the in-situ formation of metallic ruthenium as an active species during the hydrotreating process at 160 °C in a hydrogen environment. The presence of ruthenium species increases the acidity of the ruthenium-incorporated SAPO-11 system, as demonstrated by the ammonia-temperature-programmed desorption profile. The increase in surface acidity and metallic ruthenium on the surface contribute to the hydrogenation of <i>m</i>-cresol via a hydrogen spillover process, as evidenced by hydrogen desorption in TPR using both fresh and reduced catalysts. The catalyst works for several cycles of <i>m</i>-cresol hydrotreating, and the system is easily regenerated, allowing it to maintain its original activity. The ruthenium incorporated SAPO-11 catalyst is a promising system as it can hydrogenate many other model systems, including guaiacol, toluene, anisole, and cumene.</p></div>","PeriodicalId":660,"journal":{"name":"Journal of Porous Materials","volume":"31 3","pages":"1077 - 1086"},"PeriodicalIF":2.5000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Porous Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10934-024-01572-1","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Hydrotreating of lignin molecules by heterogeneous catalysts has been a significant area of research in recent eras. The current study describes the hydrotreatment of lignin-derived phenol, m-cresol, over ruthenium-incorporated SAPO-11. The developed catalyst hydrogenates m-cresol completely at 160 °C and 10 bar of hydrogen pressure, yielding 22% methyl cyclohexane, 22% methyl cyclohexanol, and 55% methyl cyclohexanone. Temperature-programmed reduction (TPR) studies using hydrogen as probe molecules show that metallic-ruthenium species exist on the SAPO-11. The desorption profile at 147–215 °C reveals the formation of dispersed metallic ruthenium on SAPO-11. The above observation is consistent with the in-situ formation of metallic ruthenium as an active species during the hydrotreating process at 160 °C in a hydrogen environment. The presence of ruthenium species increases the acidity of the ruthenium-incorporated SAPO-11 system, as demonstrated by the ammonia-temperature-programmed desorption profile. The increase in surface acidity and metallic ruthenium on the surface contribute to the hydrogenation of m-cresol via a hydrogen spillover process, as evidenced by hydrogen desorption in TPR using both fresh and reduced catalysts. The catalyst works for several cycles of m-cresol hydrotreating, and the system is easily regenerated, allowing it to maintain its original activity. The ruthenium incorporated SAPO-11 catalyst is a promising system as it can hydrogenate many other model systems, including guaiacol, toluene, anisole, and cumene.
期刊介绍:
The Journal of Porous Materials is an interdisciplinary and international periodical devoted to all types of porous materials. Its aim is the rapid publication
of high quality, peer-reviewed papers focused on the synthesis, processing, characterization and property evaluation of all porous materials. The objective is to
establish a unique journal that will serve as a principal means of communication for the growing interdisciplinary field of porous materials.
Porous materials include microporous materials with 50 nm pores.
Examples of microporous materials are natural and synthetic molecular sieves, cationic and anionic clays, pillared clays, tobermorites, pillared Zr and Ti
phosphates, spherosilicates, carbons, porous polymers, xerogels, etc. Mesoporous materials include synthetic molecular sieves, xerogels, aerogels, glasses, glass
ceramics, porous polymers, etc.; while macroporous materials include ceramics, glass ceramics, porous polymers, aerogels, cement, etc. The porous materials
can be crystalline, semicrystalline or noncrystalline, or combinations thereof. They can also be either organic, inorganic, or their composites. The overall
objective of the journal is the establishment of one main forum covering the basic and applied aspects of all porous materials.