Using joint models for longitudinal and time-to-event data to investigate the causal effect of salvage therapy after prostatectomy.

IF 1.6 3区 医学 Q3 HEALTH CARE SCIENCES & SERVICES Statistical Methods in Medical Research Pub Date : 2024-05-01 Epub Date: 2024-03-19 DOI:10.1177/09622802241239003
Dimitris Rizopoulos, Jeremy Mg Taylor, Grigorios Papageorgiou, Todd M Morgan
{"title":"Using joint models for longitudinal and time-to-event data to investigate the causal effect of salvage therapy after prostatectomy.","authors":"Dimitris Rizopoulos, Jeremy Mg Taylor, Grigorios Papageorgiou, Todd M Morgan","doi":"10.1177/09622802241239003","DOIUrl":null,"url":null,"abstract":"<p><p>Prostate cancer patients who undergo prostatectomy are closely monitored for recurrence and metastasis using routine prostate-specific antigen measurements. When prostate-specific antigen levels rise, salvage therapies are recommended in order to decrease the risk of metastasis. However, due to the side effects of these therapies and to avoid over-treatment, it is important to understand which patients and when to initiate these salvage therapies. In this work, we use the University of Michigan Prostatectomy Registry Data to tackle this question. Due to the observational nature of this data, we face the challenge that prostate-specific antigen is simultaneously a time-varying confounder and an intermediate variable for salvage therapy. We define different causal salvage therapy effects defined conditionally on different specifications of the longitudinal prostate-specific antigen history. We then illustrate how these effects can be estimated using the framework of joint models for longitudinal and time-to-event data. All proposed methodology is implemented in the freely-available R package <b>JMbayes2</b>.</p>","PeriodicalId":22038,"journal":{"name":"Statistical Methods in Medical Research","volume":" ","pages":"894-908"},"PeriodicalIF":1.6000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11041089/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Methods in Medical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/09622802241239003","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/19 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Prostate cancer patients who undergo prostatectomy are closely monitored for recurrence and metastasis using routine prostate-specific antigen measurements. When prostate-specific antigen levels rise, salvage therapies are recommended in order to decrease the risk of metastasis. However, due to the side effects of these therapies and to avoid over-treatment, it is important to understand which patients and when to initiate these salvage therapies. In this work, we use the University of Michigan Prostatectomy Registry Data to tackle this question. Due to the observational nature of this data, we face the challenge that prostate-specific antigen is simultaneously a time-varying confounder and an intermediate variable for salvage therapy. We define different causal salvage therapy effects defined conditionally on different specifications of the longitudinal prostate-specific antigen history. We then illustrate how these effects can be estimated using the framework of joint models for longitudinal and time-to-event data. All proposed methodology is implemented in the freely-available R package JMbayes2.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用纵向数据和时间到事件数据的联合模型,研究前列腺切除术后挽救疗法的因果效应。
对接受前列腺切除术的前列腺癌患者进行常规前列腺特异性抗原测量,密切监测复发和转移情况。当前列腺特异性抗原水平升高时,建议采用挽救疗法,以降低转移风险。然而,由于这些疗法存在副作用,为了避免过度治疗,了解哪些患者以及何时启动这些挽救性疗法非常重要。在这项研究中,我们利用密歇根大学前列腺切除术登记数据来解决这个问题。由于该数据的观察性质,我们面临的挑战是前列腺特异性抗原既是时变混杂因素,又是挽救疗法的中间变量。我们根据纵向前列腺特异性抗原历史的不同规格定义了不同的挽救治疗因果效应。然后,我们说明了如何利用纵向数据和时间到事件数据的联合模型框架来估算这些效应。所有建议的方法都在免费提供的 R 软件包 JMbayes2 中实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Statistical Methods in Medical Research
Statistical Methods in Medical Research 医学-数学与计算生物学
CiteScore
4.10
自引率
4.30%
发文量
127
审稿时长
>12 weeks
期刊介绍: Statistical Methods in Medical Research is a peer reviewed scholarly journal and is the leading vehicle for articles in all the main areas of medical statistics and an essential reference for all medical statisticians. This unique journal is devoted solely to statistics and medicine and aims to keep professionals abreast of the many powerful statistical techniques now available to the medical profession. This journal is a member of the Committee on Publication Ethics (COPE)
期刊最新文献
An optimal exact confidence interval for the difference of two independent binomial proportions. Covariate-adjusted response-adaptive designs for semiparametric survival models. Model-based optimal randomization procedure for treatment-covariate interaction tests. LASSO-type instrumental variable selection methods with an application to Mendelian randomization. Estimating an adjusted risk difference in a cluster randomized trial with individual-level analyses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1