Corrosion behavior and cellular automata simulation of carbon steel in salt-spray environment

IF 6.6 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY npj Materials Degradation Pub Date : 2024-03-19 DOI:10.1038/s41529-024-00447-9
Hong Qin, Jin Liu, Qianxi Shao, Xiqing Zhang, Yingxue Teng, Shuweng Chen, Dazhen Zhang, Shuo Bao
{"title":"Corrosion behavior and cellular automata simulation of carbon steel in salt-spray environment","authors":"Hong Qin, Jin Liu, Qianxi Shao, Xiqing Zhang, Yingxue Teng, Shuweng Chen, Dazhen Zhang, Shuo Bao","doi":"10.1038/s41529-024-00447-9","DOIUrl":null,"url":null,"abstract":"Scanning electron microscope (SEM) and X-ray diffraction (XRD) were used to discuss the corrosion loss and morphology of the pit and rust layer of carbon steel. It was found that the corrosion process is largely influenced by the cyclic shedding of surface corrosion products, in addition to being controlled by the mechanism of oxide film shedding and pit evolution. A corrosion mechanism (the mechanism of rust layer shedding) is proposed. As a result, in this paper, the corrosion process of the test steel is simulated by the cellular automata. It was set up that the mechanism of oxide film shedding, the mechanism of pit evolution, and the mechanism of rust layer shedding in Cellular Automata Simulation. The optimal time ratio and simulation parameters were found, and a predictable cellular automata corrosion simulation model was built, providing a solution for carbon steel’s service life prediction.","PeriodicalId":19270,"journal":{"name":"npj Materials Degradation","volume":" ","pages":"1-10"},"PeriodicalIF":6.6000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41529-024-00447-9.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Materials Degradation","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41529-024-00447-9","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Scanning electron microscope (SEM) and X-ray diffraction (XRD) were used to discuss the corrosion loss and morphology of the pit and rust layer of carbon steel. It was found that the corrosion process is largely influenced by the cyclic shedding of surface corrosion products, in addition to being controlled by the mechanism of oxide film shedding and pit evolution. A corrosion mechanism (the mechanism of rust layer shedding) is proposed. As a result, in this paper, the corrosion process of the test steel is simulated by the cellular automata. It was set up that the mechanism of oxide film shedding, the mechanism of pit evolution, and the mechanism of rust layer shedding in Cellular Automata Simulation. The optimal time ratio and simulation parameters were found, and a predictable cellular automata corrosion simulation model was built, providing a solution for carbon steel’s service life prediction.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
盐雾环境中碳钢的腐蚀行为和细胞自动机模拟
使用扫描电子显微镜(SEM)和 X 射线衍射(XRD)讨论了碳钢的腐蚀损耗及凹坑和锈层的形态。研究发现,腐蚀过程除了受氧化膜脱落和凹坑演变机理的控制外,在很大程度上还受表面腐蚀产物循环脱落的影响。本文提出了一种腐蚀机理(锈层脱落机理)。因此,本文用单元自动机模拟了试验钢材的腐蚀过程。在细胞自动机模拟中设定了氧化膜脱落机理、凹坑演变机理和锈层脱落机理。找到了最佳时间比和模拟参数,建立了可预测的细胞自动机腐蚀模拟模型,为碳钢的使用寿命预测提供了解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
npj Materials Degradation
npj Materials Degradation MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
7.80
自引率
7.80%
发文量
86
审稿时长
6 weeks
期刊介绍: npj Materials Degradation considers basic and applied research that explores all aspects of the degradation of metallic and non-metallic materials. The journal broadly defines ‘materials degradation’ as a reduction in the ability of a material to perform its task in-service as a result of environmental exposure. The journal covers a broad range of topics including but not limited to: -Degradation of metals, glasses, minerals, polymers, ceramics, cements and composites in natural and engineered environments, as a result of various stimuli -Computational and experimental studies of degradation mechanisms and kinetics -Characterization of degradation by traditional and emerging techniques -New approaches and technologies for enhancing resistance to degradation -Inspection and monitoring techniques for materials in-service, such as sensing technologies
期刊最新文献
Systematic quantification of hydrogen in pipeline steel by atom probe tomography after ambient charging and transfer Corrosion evaluation of Al-Cu-Mn-Zr cast alloys in 3.5% NaCl solution Fracture analysis under modes I and II of adhesive joints on CFRP in saline environment Microscale chemical imaging to characterize and quantify corrosion processes at the metal-electrolyte interface Microstructure engineering for corrosion resistance in structural alloy design
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1