{"title":"Propagation and Maintenance of the Quasi-Biweekly Oscillation over the Western North Pacific in Boreal Winter","authors":"Zizhen Dong, Lin Wang, Ruowen Yang, Jie Cao","doi":"10.1175/jcli-d-23-0387.1","DOIUrl":null,"url":null,"abstract":"Abstract This study investigates the propagation and maintenance mechanisms of the dominant intraseasonal oscillation over the western North Pacific in boreal winter, the quasi-biweekly oscillation (QBWO). The wintertime QBWO over the western North Pacific is characterized by the westward-northwestward movement from the tropical western Pacific to the western North Pacific and resembles the n = 1 equatorial Rossby wave. Its westward migration is primarily driven by the seasonal-mean zonal winds that advect vorticity anomalies in the lower-middle troposphere and moisture anomalies in the lower troposphere. Its northward movement is preconditioned by the vorticity dynamics of the beta effect, the low-level vertical moisture variation, and the local air-sea interaction. The latter involves the atmospheric forcing on the underlying ocean by changing the surface heat flux fluctuations and the sea surface temperature feedback on the low-level atmospheric instability. Its maintenance is primarily through atmospheric external energy sources from diabatic heating, which first generates eddy available potential energy and then converts it to eddy kinetic energy.","PeriodicalId":15472,"journal":{"name":"Journal of Climate","volume":"19 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Climate","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1175/jcli-d-23-0387.1","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract This study investigates the propagation and maintenance mechanisms of the dominant intraseasonal oscillation over the western North Pacific in boreal winter, the quasi-biweekly oscillation (QBWO). The wintertime QBWO over the western North Pacific is characterized by the westward-northwestward movement from the tropical western Pacific to the western North Pacific and resembles the n = 1 equatorial Rossby wave. Its westward migration is primarily driven by the seasonal-mean zonal winds that advect vorticity anomalies in the lower-middle troposphere and moisture anomalies in the lower troposphere. Its northward movement is preconditioned by the vorticity dynamics of the beta effect, the low-level vertical moisture variation, and the local air-sea interaction. The latter involves the atmospheric forcing on the underlying ocean by changing the surface heat flux fluctuations and the sea surface temperature feedback on the low-level atmospheric instability. Its maintenance is primarily through atmospheric external energy sources from diabatic heating, which first generates eddy available potential energy and then converts it to eddy kinetic energy.
期刊介绍:
The Journal of Climate (JCLI) (ISSN: 0894-8755; eISSN: 1520-0442) publishes research that advances basic understanding of the dynamics and physics of the climate system on large spatial scales, including variability of the atmosphere, oceans, land surface, and cryosphere; past, present, and projected future changes in the climate system; and climate simulation and prediction.