Victor A. Verdugo-Gutiérrez , Tingting Zhai , Komla Nomenyo , Basma Zouari , Hamadi Khemakhem , Alexandre Vial , Gilles Lérondel , Rafael Salas-Montiel
{"title":"Electric and magnetic metal-insulator-metal metasurfaces in the mid-infrared based on Babinet’s, Lorentz’s, and Kirchhoff’s principles","authors":"Victor A. Verdugo-Gutiérrez , Tingting Zhai , Komla Nomenyo , Basma Zouari , Hamadi Khemakhem , Alexandre Vial , Gilles Lérondel , Rafael Salas-Montiel","doi":"10.1016/j.photonics.2024.101256","DOIUrl":null,"url":null,"abstract":"<div><p>Metasurfaces can extend the optical properties of conventional materials by structuring surfaces at a subwavelength scale. These artificial subwavelength surfaces mimic the physics of conventional materials and can, in principle, be designed to provide novel optical material properties. Metal-insulator-metal (MIM) antenna metasurfaces are among the most widely used as ideal absorbers and emitters. In this work, we present MIM metasurfaces in the mid-infrared that comply in the electric and magnetic forms of Babinet’s, Lorentz’s, and Kirchhoff’s principles. To verify the validity of Babinet's, Lorentz's, and Kirchhoff's MIM metasurfaces, we computed their reflection and absorption spectra as well as electric and magnetic field maps. We found that even in the presence of graphene on top of the electric and magnetic MIM metasurfaces, these principles still hold qualitatively. However, the excitation of gap surface plasmon polaritons (SPPs) and graphene SPPs fails to comply quantitatively. Additionally, we fabricated the MIM metasurfaces and used imaging Fourier transform infrared spectroscopy in the mid infrared spectrum to validate them. Finally, we explore the potentials and limits of the use of graphene as tunability material, with a tunability bandwidth up to 0.6 µm. Our findings can be applied to the development of electric and magnetic frequency selectivity metasurfaces, polarizers, coherent thermal sources, and detectors.</p></div>","PeriodicalId":49699,"journal":{"name":"Photonics and Nanostructures-Fundamentals and Applications","volume":"59 ","pages":"Article 101256"},"PeriodicalIF":2.5000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics and Nanostructures-Fundamentals and Applications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569441024000312","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Metasurfaces can extend the optical properties of conventional materials by structuring surfaces at a subwavelength scale. These artificial subwavelength surfaces mimic the physics of conventional materials and can, in principle, be designed to provide novel optical material properties. Metal-insulator-metal (MIM) antenna metasurfaces are among the most widely used as ideal absorbers and emitters. In this work, we present MIM metasurfaces in the mid-infrared that comply in the electric and magnetic forms of Babinet’s, Lorentz’s, and Kirchhoff’s principles. To verify the validity of Babinet's, Lorentz's, and Kirchhoff's MIM metasurfaces, we computed their reflection and absorption spectra as well as electric and magnetic field maps. We found that even in the presence of graphene on top of the electric and magnetic MIM metasurfaces, these principles still hold qualitatively. However, the excitation of gap surface plasmon polaritons (SPPs) and graphene SPPs fails to comply quantitatively. Additionally, we fabricated the MIM metasurfaces and used imaging Fourier transform infrared spectroscopy in the mid infrared spectrum to validate them. Finally, we explore the potentials and limits of the use of graphene as tunability material, with a tunability bandwidth up to 0.6 µm. Our findings can be applied to the development of electric and magnetic frequency selectivity metasurfaces, polarizers, coherent thermal sources, and detectors.
期刊介绍:
This journal establishes a dedicated channel for physicists, material scientists, chemists, engineers and computer scientists who are interested in photonics and nanostructures, and especially in research related to photonic crystals, photonic band gaps and metamaterials. The Journal sheds light on the latest developments in this growing field of science that will see the emergence of faster telecommunications and ultimately computers that use light instead of electrons to connect components.