Photocurable extracellular matrix sealant for cessation of venous hemorrhage

IF 3.2 4区 医学 Q2 ENGINEERING, BIOMEDICAL Journal of biomedical materials research. Part B, Applied biomaterials Pub Date : 2024-03-23 DOI:10.1002/jbm.b.35401
Luke E. Schepers, Brooke L. Martindale, Alycia G. Berman, Hannah L. Cebull, William Van Alstine, Sydney E. Hollingshead, Tyler Novak, Craig J. Goergen
{"title":"Photocurable extracellular matrix sealant for cessation of venous hemorrhage","authors":"Luke E. Schepers,&nbsp;Brooke L. Martindale,&nbsp;Alycia G. Berman,&nbsp;Hannah L. Cebull,&nbsp;William Van Alstine,&nbsp;Sydney E. Hollingshead,&nbsp;Tyler Novak,&nbsp;Craig J. Goergen","doi":"10.1002/jbm.b.35401","DOIUrl":null,"url":null,"abstract":"<p>Hemorrhage is the second leading cause of death in patients under 46 years of age in the United States. Cessation of hemorrhage prevents hemorrhagic shock and tissue hypoxia. Controlling the bleed via direct pressure or tourniquet is often the first line of defense, but long-term care requires staples, hemostatic agents, or sealants that seal the vessel and restore blood flow. Here, we compare a new photocurable extracellular matrix sealant (pcECM) with low, medium, and high crosslink density formulations to a commercially available fibrin-based sealant, TISSEEL®. pcECM has potential uses in surgical and remote settings due to room temperature storage conditions and fast preparation time. Here, we determine if pcECM sealant can stop venous hemorrhage in a murine model, adhere to the wound site <i>in vivo</i> throughout the wound-healing process, and has the mechanical properties necessary for stopping hemorrhage. Adjusting pcECM crosslinking density significantly affected viscosity, swelling, burst strength, tensile strength, and elasticity of the sealant. 3-Dimensional ultrasound volume segmentations showed pcECM degrades to 17 ± 8% of its initial implant volume by day 28. Initially, local hemodynamic changes were observed, but returned close to baseline levels by day 28. Acute inflammation was observed near the puncture site in pcECM implanted mice, and we observed inflammatory markers at the 14-day explant for both sealants. pcECM and fibrin sealant successfully sealed the vessel in all cases, and consistently degraded over 14–28 days. pcECM is a durable sealant with tunable mechanical properties and possible uses in hemorrhage control and other surgical procedures.</p>","PeriodicalId":15269,"journal":{"name":"Journal of biomedical materials research. Part B, Applied biomaterials","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jbm.b.35401","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomedical materials research. Part B, Applied biomaterials","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbm.b.35401","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Hemorrhage is the second leading cause of death in patients under 46 years of age in the United States. Cessation of hemorrhage prevents hemorrhagic shock and tissue hypoxia. Controlling the bleed via direct pressure or tourniquet is often the first line of defense, but long-term care requires staples, hemostatic agents, or sealants that seal the vessel and restore blood flow. Here, we compare a new photocurable extracellular matrix sealant (pcECM) with low, medium, and high crosslink density formulations to a commercially available fibrin-based sealant, TISSEEL®. pcECM has potential uses in surgical and remote settings due to room temperature storage conditions and fast preparation time. Here, we determine if pcECM sealant can stop venous hemorrhage in a murine model, adhere to the wound site in vivo throughout the wound-healing process, and has the mechanical properties necessary for stopping hemorrhage. Adjusting pcECM crosslinking density significantly affected viscosity, swelling, burst strength, tensile strength, and elasticity of the sealant. 3-Dimensional ultrasound volume segmentations showed pcECM degrades to 17 ± 8% of its initial implant volume by day 28. Initially, local hemodynamic changes were observed, but returned close to baseline levels by day 28. Acute inflammation was observed near the puncture site in pcECM implanted mice, and we observed inflammatory markers at the 14-day explant for both sealants. pcECM and fibrin sealant successfully sealed the vessel in all cases, and consistently degraded over 14–28 days. pcECM is a durable sealant with tunable mechanical properties and possible uses in hemorrhage control and other surgical procedures.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于终止静脉出血的光固化细胞外基质密封剂。
出血是美国 46 岁以下患者的第二大死因。止血可防止失血性休克和组织缺氧。通过直接加压或止血带控制出血通常是第一道防线,但长期护理需要用订书机、止血剂或密封剂来密封血管并恢复血流。在这里,我们将一种新型光固化细胞外基质密封剂(pcECM)的低、中、高交联密度配方与市售的纤维蛋白基密封剂 TISSEEL® 进行了比较。pcECM 具有室温储存条件和快速制备时间,可用于外科手术和偏远地区。在此,我们将确定 pcECM 密封剂是否能在小鼠模型中止住静脉出血,是否能在整个伤口愈合过程中粘附在伤口部位,以及是否具有止血所需的机械特性。调整 pcECM 交联密度可显著影响密封剂的粘度、膨胀、爆破强度、拉伸强度和弹性。三维超声体积分割显示,pcECM 在第 28 天时降解到初始植入体积的 17 ± 8%。最初观察到局部血流动力学变化,但到第 28 天又恢复到接近基线水平。pcECM 和纤维蛋白密封剂在所有病例中都成功地密封了血管,并在 14-28 天内持续降解。pcECM 是一种耐用的密封剂,具有可调的机械特性,可用于出血控制和其他外科手术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.50
自引率
2.90%
发文量
199
审稿时长
12 months
期刊介绍: Journal of Biomedical Materials Research – Part B: Applied Biomaterials is a highly interdisciplinary peer-reviewed journal serving the needs of biomaterials professionals who design, develop, produce and apply biomaterials and medical devices. It has the common focus of biomaterials applied to the human body and covers all disciplines where medical devices are used. Papers are published on biomaterials related to medical device development and manufacture, degradation in the body, nano- and biomimetic- biomaterials interactions, mechanics of biomaterials, implant retrieval and analysis, tissue-biomaterial surface interactions, wound healing, infection, drug delivery, standards and regulation of devices, animal and pre-clinical studies of biomaterials and medical devices, and tissue-biopolymer-material combination products. Manuscripts are published in one of six formats: • original research reports • short research and development reports • scientific reviews • current concepts articles • special reports • editorials Journal of Biomedical Materials Research – Part B: Applied Biomaterials is an official journal of the Society for Biomaterials, Japanese Society for Biomaterials, the Australasian Society for Biomaterials, and the Korean Society for Biomaterials. Manuscripts from all countries are invited but must be in English. Authors are not required to be members of the affiliated Societies, but members of these societies are encouraged to submit their work to the journal for consideration.
期刊最新文献
Accelerated In Vitro Oxidative Degradation Testing of Ultra-High Molecular Weight Polyethylene (UHMWPE) Issue Information Biocompatible and Safe Decellularized Spinach With Antibacterial and Wound Healing Activity In Vitro and In Vivo Biocompatibility of Bacterial Cellulose Molecular Biomarkers for In Vitro Thrombogenicity Assessment of Medical Device Materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1