{"title":"A nano-cocktail of the PARP inhibitor talazoparib and CDK inhibitor dinaciclib for the treatment of triple negative breast cancer","authors":"Paige Baldwin, Shicheng Yang, Adrienne Orriols, Sherrie Wang, Needa Brown, Srinivas Sridhar","doi":"10.1186/s12645-023-00240-4","DOIUrl":null,"url":null,"abstract":"The addition of the cyclin dependent kinase inhibitor (CDKi) dinaciclib to Poly-(ADP-ribose) polymerase inhibitor (PARPi) therapy is a strategy to overcome resistance to PARPi in tumors that exhibit homologous recombination (HR) deficiencies as well as to expand PARPi therapy to tumors that do not exhibit HR deficiencies. However, combination therapy using pathway inhibitors has been plagued by an inability to administer doses sufficient to achieve clinical benefit due to synergistic toxicities. Here we sought to combine nanoformulations of the PARPi talazoparib, nTLZ, and the CDKi dinaciclib, nDCB, in a nano-cocktail to enhance therapeutic efficacy while maintaining lower doses. Pharmacokinetics of nDCB were assessed to ensure it is compatible with nTLZ. nDCB was combined with nTLZ to generate a nano-cocktail nDCB:nTLZ, which elicits greater cell death in vitro compared to the combination of the free drugs. MDA-MB-231-LUC-D3H2LN xenografts were utilized to assess therapeutic efficacy of the nano-cocktail in terms of tumor progression. Administration of the nano-cocktail significantly slowed tumor progression in the HR proficient animal model compared to administration of free talazoparib and free dinaciclib at the same doses. Histology of the liver, spleen, and kidneys revealed long-term treatment did not induce nanoparticle associated morphological changes. Complete blood count did not reveal any significant hematologic changes after treatment with either the free combination or nano-cocktail. The efficacy and toxicity data suggest that further dose escalation can be pursued in order to achieve a stronger response. These data suggest the administration of combination therapy through the nano-cocktail leads to a better response than the use of free compounds and is a promising strategy for implementing combination therapy in the clinic.","PeriodicalId":9408,"journal":{"name":"Cancer Nanotechnology","volume":"102 1","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2024-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Nanotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12645-023-00240-4","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The addition of the cyclin dependent kinase inhibitor (CDKi) dinaciclib to Poly-(ADP-ribose) polymerase inhibitor (PARPi) therapy is a strategy to overcome resistance to PARPi in tumors that exhibit homologous recombination (HR) deficiencies as well as to expand PARPi therapy to tumors that do not exhibit HR deficiencies. However, combination therapy using pathway inhibitors has been plagued by an inability to administer doses sufficient to achieve clinical benefit due to synergistic toxicities. Here we sought to combine nanoformulations of the PARPi talazoparib, nTLZ, and the CDKi dinaciclib, nDCB, in a nano-cocktail to enhance therapeutic efficacy while maintaining lower doses. Pharmacokinetics of nDCB were assessed to ensure it is compatible with nTLZ. nDCB was combined with nTLZ to generate a nano-cocktail nDCB:nTLZ, which elicits greater cell death in vitro compared to the combination of the free drugs. MDA-MB-231-LUC-D3H2LN xenografts were utilized to assess therapeutic efficacy of the nano-cocktail in terms of tumor progression. Administration of the nano-cocktail significantly slowed tumor progression in the HR proficient animal model compared to administration of free talazoparib and free dinaciclib at the same doses. Histology of the liver, spleen, and kidneys revealed long-term treatment did not induce nanoparticle associated morphological changes. Complete blood count did not reveal any significant hematologic changes after treatment with either the free combination or nano-cocktail. The efficacy and toxicity data suggest that further dose escalation can be pursued in order to achieve a stronger response. These data suggest the administration of combination therapy through the nano-cocktail leads to a better response than the use of free compounds and is a promising strategy for implementing combination therapy in the clinic.
Cancer NanotechnologyPharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
5.20
自引率
1.80%
发文量
37
审稿时长
15 weeks
期刊介绍:
Aim:
Recognizing cancer as a group of diseases caused by nanostructural problems (i.e. with DNA) and also that there are unique benefits to approaches inherently involving nanoscale structures and processes to treat the disease, the journal Cancer Nanotechnology aims to disseminate cutting edge research; to promote emerging trends in the use of nanostructures and the induction of nanoscale processes for the prevention, diagnosis, treatment of cancer; and to cover related ancillary areas.
Scope:
Articles describing original research in the use of nanostructures and the induction of nanoscale processes for the prevention, diagnosis and treatment of cancer (open submission process). Review, editorial and tutorial articles picking up on subthemes of emerging importance where nanostructures and the induction of nanoscale processes are used for the prevention, diagnosis and treatment of cancer.