Hangyu Lei, Dantong Duan, Yi Chen, Huifeng Guo, Jiangtao Li, Xiang Li
{"title":"Effects of landscape fragmentation of plantation forests on carbon storage in the Loess Plateau, China","authors":"Hangyu Lei, Dantong Duan, Yi Chen, Huifeng Guo, Jiangtao Li, Xiang Li","doi":"10.1007/s40333-024-0005-3","DOIUrl":null,"url":null,"abstract":"<p>Tree plantation and forest restoration are the major strategies for enhancing terrestrial carbon sequestration and mitigating climate change. The Grain for Green Project in China has positively impacted global carbon sequestration and the trend towards fragmentation of plantation forests. Limited studies have been conducted on changes in plantation biomass and stand structure caused by fragmentation, and the effect of fragmentation on the carbon storage of plantation forests remains unclear. This study evaluated the differences between carbon storage and stand structure in black locust forests in fragmented and continuous landscape in the Ansai District, China and discussed the effects of ecological significance of four landscape indices on carbon storage and tree density. We used structural equation modelling to explore the direct and indirect effects of fragmentation, edge, abiotic factors, and stand structure on above-ground carbon storage. Diameter at breast height (DBH) in fragmented forests was 53.3% thicker, tree density was 40.9% lower, and carbon storage was 49.8% higher than those in continuous forests; for all given DBH>10 cm, the trees in fragmented forests were shorter than those in continuous forests. The patch area had a negative impact on carbon storage, i.e., the higher the degree of fragmentation, the lower the density of the tree; and fragmentation and distance to edge (DTE) directly increased canopy coverage. However, canopy coverage directly decreased carbon storage, and fragmentation directly increased carbon storage and tree density. In non-commercial forests, fragmentation reduces the carbon storage potential of plantation, and the influence of patch area, edge, and patchy connection on plantation should be considered when follow-up trees are planted and for the plantation management. Thus, expanding the area of plantation patches, repairing the edges of complex-shaped patches, enhancing the connectivity of similar patches, and applying nutrients to plantation forests at regular intervals are recommended in fragmented areas of the Loess Plateau.</p>","PeriodicalId":49169,"journal":{"name":"Journal of Arid Land","volume":"61 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Arid Land","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s40333-024-0005-3","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Tree plantation and forest restoration are the major strategies for enhancing terrestrial carbon sequestration and mitigating climate change. The Grain for Green Project in China has positively impacted global carbon sequestration and the trend towards fragmentation of plantation forests. Limited studies have been conducted on changes in plantation biomass and stand structure caused by fragmentation, and the effect of fragmentation on the carbon storage of plantation forests remains unclear. This study evaluated the differences between carbon storage and stand structure in black locust forests in fragmented and continuous landscape in the Ansai District, China and discussed the effects of ecological significance of four landscape indices on carbon storage and tree density. We used structural equation modelling to explore the direct and indirect effects of fragmentation, edge, abiotic factors, and stand structure on above-ground carbon storage. Diameter at breast height (DBH) in fragmented forests was 53.3% thicker, tree density was 40.9% lower, and carbon storage was 49.8% higher than those in continuous forests; for all given DBH>10 cm, the trees in fragmented forests were shorter than those in continuous forests. The patch area had a negative impact on carbon storage, i.e., the higher the degree of fragmentation, the lower the density of the tree; and fragmentation and distance to edge (DTE) directly increased canopy coverage. However, canopy coverage directly decreased carbon storage, and fragmentation directly increased carbon storage and tree density. In non-commercial forests, fragmentation reduces the carbon storage potential of plantation, and the influence of patch area, edge, and patchy connection on plantation should be considered when follow-up trees are planted and for the plantation management. Thus, expanding the area of plantation patches, repairing the edges of complex-shaped patches, enhancing the connectivity of similar patches, and applying nutrients to plantation forests at regular intervals are recommended in fragmented areas of the Loess Plateau.
期刊介绍:
The Journal of Arid Land is an international peer-reviewed journal co-sponsored by Xinjiang Institute of Ecology and Geography, the Chinese Academy of Sciences and Science Press. It aims to meet the needs of researchers, students and practitioners in sustainable development and eco-environmental management, focusing on the arid and semi-arid lands in Central Asia and the world at large.
The Journal covers such topics as the dynamics of natural resources (including water, soil and land, organism and climate), the security and sustainable development of natural resources, and the environment and the ecology in arid and semi-arid lands, especially in Central Asia. Coverage also includes interactions between the atmosphere, hydrosphere, biosphere, and lithosphere, and the relationship between these natural processes and human activities. Also discussed are patterns of geography, ecology and environment; ecological improvement and environmental protection; and regional responses and feedback mechanisms to global change. The Journal of Arid Land also presents reviews, brief communications, trends and book reviews of work on these topics.