Yingqi Bai, Junhua Xiao, Lihua Xue, Zhiyong Liu, Binglong Wang
{"title":"Correction effect of jet-grouting on the high-speed railway subgrade lateral deformation on soft soil","authors":"Yingqi Bai, Junhua Xiao, Lihua Xue, Zhiyong Liu, Binglong Wang","doi":"10.1680/jgeen.23.00169","DOIUrl":null,"url":null,"abstract":"Viable remediation of the large lateral deformation of high-speed railway (HSR) subgrades, especially in soft soil areas, is still absent. An integrated rectification scheme of high-pressure jet-grouting (HPJG) combined with stress-release techniques was conducted to rectify the large lateral deformation of an operational HSR subgrade in the soft soil area of China, but without the refined design and mechanical analysis before rectification due to the emergency. The objective of the study is to post-evaluate the rectification effects utilizing field monitoring data and numerical calculations. The monitoring data showed that the maximum lateral deviation of the subgrade was 69.1 mm, which almost met the expected correction requirements. However, the influence of the excess pore water pressure (EPWP) dissipation on the correction deviation was not considered in the scheme. Therefore, a numerical model was established to further investigate this effect and corresponding mitigation methods. The calculated results revealed that EPWP in the foundation dissipated mostly within six months after rectification, and the deformation loss accounted for 30.7% of the total deviation. Prolonging the interval of two-row pile construction can be a plausible approach to mitigate the deviation loss. The findings provide a feasible method for correcting large lateral deformation of HSR subgrades.","PeriodicalId":54572,"journal":{"name":"Proceedings of the Institution of Civil Engineers-Geotechnical Engineering","volume":"102 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Civil Engineers-Geotechnical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1680/jgeen.23.00169","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Viable remediation of the large lateral deformation of high-speed railway (HSR) subgrades, especially in soft soil areas, is still absent. An integrated rectification scheme of high-pressure jet-grouting (HPJG) combined with stress-release techniques was conducted to rectify the large lateral deformation of an operational HSR subgrade in the soft soil area of China, but without the refined design and mechanical analysis before rectification due to the emergency. The objective of the study is to post-evaluate the rectification effects utilizing field monitoring data and numerical calculations. The monitoring data showed that the maximum lateral deviation of the subgrade was 69.1 mm, which almost met the expected correction requirements. However, the influence of the excess pore water pressure (EPWP) dissipation on the correction deviation was not considered in the scheme. Therefore, a numerical model was established to further investigate this effect and corresponding mitigation methods. The calculated results revealed that EPWP in the foundation dissipated mostly within six months after rectification, and the deformation loss accounted for 30.7% of the total deviation. Prolonging the interval of two-row pile construction can be a plausible approach to mitigate the deviation loss. The findings provide a feasible method for correcting large lateral deformation of HSR subgrades.
期刊介绍:
Geotechnical Engineering provides a forum for the publication of high quality, topical and relevant technical papers covering all aspects of geotechnical research, design, construction and performance. The journal aims to be of interest to those civil, structural or geotechnical engineering practitioners wishing to develop a greater understanding of the influence of geotechnics on the built environment.