{"title":"SVD-Aided EKF for Nanosatellite Attitude Estimation Based on Kinematic and Dynamic Relations","authors":"D. Cilden-Guler, Ch. Hajiyev","doi":"10.1134/s2075108724700081","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Small satellite attitude angles are estimated using measurements of star trackers and rate gyros in this study. The issue related to gyro drifts is overcome by adding the bias terms into the state vector in order to estimate them. As an estimation method, two-stage non-traditional filter is used. In the first stage, singular value decomposition (SVD) is used for determining the attitude measurements. As a second stage, an extended Kalman filter (EKF) is designed based on linear attitude measurements. These two stages are integrated for the whole estimation algorithm in order to have estimations with high accuracy, and it is called SVD-Aided EKF. The proposed SVD-Aided EKF is used with two attitude models of satellite: only the kinematics model which does not include the dynamics of a satellite, and both kinematics and dynamics relations. Several scales of uncertainties on the principal moment of inertia of the satellite are considered in order to determine the level when estimation error of the kinematics and dynamics-based filter exceeds the error of the case using only kinematics relations.</p>","PeriodicalId":38999,"journal":{"name":"Gyroscopy and Navigation","volume":"87 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gyroscopy and Navigation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1134/s2075108724700081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0
Abstract
Small satellite attitude angles are estimated using measurements of star trackers and rate gyros in this study. The issue related to gyro drifts is overcome by adding the bias terms into the state vector in order to estimate them. As an estimation method, two-stage non-traditional filter is used. In the first stage, singular value decomposition (SVD) is used for determining the attitude measurements. As a second stage, an extended Kalman filter (EKF) is designed based on linear attitude measurements. These two stages are integrated for the whole estimation algorithm in order to have estimations with high accuracy, and it is called SVD-Aided EKF. The proposed SVD-Aided EKF is used with two attitude models of satellite: only the kinematics model which does not include the dynamics of a satellite, and both kinematics and dynamics relations. Several scales of uncertainties on the principal moment of inertia of the satellite are considered in order to determine the level when estimation error of the kinematics and dynamics-based filter exceeds the error of the case using only kinematics relations.
期刊介绍:
Gyroscopy and Navigation is an international peer reviewed journal that covers the following subjects: inertial sensors, navigation and orientation systems; global satellite navigation systems; integrated INS/GNSS navigation systems; navigation in GNSS-degraded environments and indoor navigation; gravimetric systems and map-aided navigation; hydroacoustic navigation systems; navigation devices and sensors (logs, echo sounders, magnetic compasses); navigation and sonar data processing algorithms. The journal welcomes manuscripts from all countries in the English or Russian language.