Kassa Belay Ibrahim , Tofik Ahmed Shifa , Sandro Zorzi , Marshet Getaye Sendeku , Elisa Moretti , Alberto Vomiero
{"title":"Emerging 2D materials beyond mxenes and TMDs: Transition metal carbo-chalcogenides","authors":"Kassa Belay Ibrahim , Tofik Ahmed Shifa , Sandro Zorzi , Marshet Getaye Sendeku , Elisa Moretti , Alberto Vomiero","doi":"10.1016/j.pmatsci.2024.101287","DOIUrl":null,"url":null,"abstract":"<div><p>The discovery of graphene sparked significant interest in 2D materials, which present an ultra-thin layered structure with high anisotropy and adjustable energy-band structure. Interestingly, it opens the door for the development of the 2D materials family, which includes different classes of 2D materials. Among them, transition metal dichalcogenides (TMDs) and transition metal carbide MXenes (TMCs) have emerged. TMDs have unique layered structures, low cost, and are composed of earth abundant elements, but their poor electronic conductivity, poor cyclic stability, their structural and morphological changes during electrochemical measurements hinder their practical use. Recently, TMC MXenes have garnered attention in the 2D material world, but the issue of restacking and aggregation limits their direct use in large-scale energy conversion and storage. To address these challenges, hetero structures based on conductive TMCs MXenes and electrochemically active TMDs have emerged as a promising solution. However, understanding the solid/solid interface in heterostructured materials remains a challenge. To tackle this, 2D single component crystals with high capacity, low diffusion barrier, and good electronic conductivity are highly sought. The emergence of transition metal carbo-chalcogenides (TMCCs) has provided a potential solution, as these 2D nanosheets consist of TM<sub>2</sub>X<sub>2</sub>C, where TM represents transition metal, X is either S or Se, and C atom. This new class of 2D materials serves as a remedy by avoiding the challenges related to solid/solid interfaces often encountered in heterostructures. This review focuses on the latest developments in TMCCs, including their synthetic strategies, surface/interface engineering, and potential application in batteries, water splitting, and other electro-catalytic processes. The challenges and future perspectives of the design of TMCCs for electrochemical energy conversion and storage are also discussed.</p></div>","PeriodicalId":411,"journal":{"name":"Progress in Materials Science","volume":"144 ","pages":"Article 101287"},"PeriodicalIF":33.6000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079642524000562","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The discovery of graphene sparked significant interest in 2D materials, which present an ultra-thin layered structure with high anisotropy and adjustable energy-band structure. Interestingly, it opens the door for the development of the 2D materials family, which includes different classes of 2D materials. Among them, transition metal dichalcogenides (TMDs) and transition metal carbide MXenes (TMCs) have emerged. TMDs have unique layered structures, low cost, and are composed of earth abundant elements, but their poor electronic conductivity, poor cyclic stability, their structural and morphological changes during electrochemical measurements hinder their practical use. Recently, TMC MXenes have garnered attention in the 2D material world, but the issue of restacking and aggregation limits their direct use in large-scale energy conversion and storage. To address these challenges, hetero structures based on conductive TMCs MXenes and electrochemically active TMDs have emerged as a promising solution. However, understanding the solid/solid interface in heterostructured materials remains a challenge. To tackle this, 2D single component crystals with high capacity, low diffusion barrier, and good electronic conductivity are highly sought. The emergence of transition metal carbo-chalcogenides (TMCCs) has provided a potential solution, as these 2D nanosheets consist of TM2X2C, where TM represents transition metal, X is either S or Se, and C atom. This new class of 2D materials serves as a remedy by avoiding the challenges related to solid/solid interfaces often encountered in heterostructures. This review focuses on the latest developments in TMCCs, including their synthetic strategies, surface/interface engineering, and potential application in batteries, water splitting, and other electro-catalytic processes. The challenges and future perspectives of the design of TMCCs for electrochemical energy conversion and storage are also discussed.
期刊介绍:
Progress in Materials Science is a journal that publishes authoritative and critical reviews of recent advances in the science of materials. The focus of the journal is on the fundamental aspects of materials science, particularly those concerning microstructure and nanostructure and their relationship to properties. Emphasis is also placed on the thermodynamics, kinetics, mechanisms, and modeling of processes within materials, as well as the understanding of material properties in engineering and other applications.
The journal welcomes reviews from authors who are active leaders in the field of materials science and have a strong scientific track record. Materials of interest include metallic, ceramic, polymeric, biological, medical, and composite materials in all forms.
Manuscripts submitted to Progress in Materials Science are generally longer than those found in other research journals. While the focus is on invited reviews, interested authors may submit a proposal for consideration. Non-invited manuscripts are required to be preceded by the submission of a proposal. Authors publishing in Progress in Materials Science have the option to publish their research via subscription or open access. Open access publication requires the author or research funder to meet a publication fee (APC).
Abstracting and indexing services for Progress in Materials Science include Current Contents, Science Citation Index Expanded, Materials Science Citation Index, Chemical Abstracts, Engineering Index, INSPEC, and Scopus.