Revealing precipitation behavior and mechanical response of wire-arc directed energy deposited Mg-Gd-Y-Zr alloy by tailoring aging procedures

IF 16.1 1区 工程技术 Q1 ENGINEERING, MANUFACTURING International Journal of Extreme Manufacturing Pub Date : 2024-03-20 DOI:10.1088/2631-7990/ad35fd
Xinzhi Li, X. Fang, Zhiyan Zhang, Shahid Ghafoor, Ruikai Chen, Yi Liu, Kexin Tang, Kai Li, Minghua Ma, Jiahao Shang, Ke Huang
{"title":"Revealing precipitation behavior and mechanical response of wire-arc directed energy deposited Mg-Gd-Y-Zr alloy by tailoring aging procedures","authors":"Xinzhi Li, X. Fang, Zhiyan Zhang, Shahid Ghafoor, Ruikai Chen, Yi Liu, Kexin Tang, Kai Li, Minghua Ma, Jiahao Shang, Ke Huang","doi":"10.1088/2631-7990/ad35fd","DOIUrl":null,"url":null,"abstract":"\n Mg-Gd-Y-Zr alloy, as a typical magnesium rare-earth (Mg-RE) alloy, is gaining popularity in the advanced equipment manufacturing fields owing to their noticeable age-hardening properties and high specific strength. However, it is extremely challenging to prepare wrought components with large dimensions and complex shapes because of the poor room-temperature processability of Mg-Gd-Y-Zr alloy. Herein, we report a wire-arc directed energy deposited (DED) Mg-10.45Gd-2.27Y-0.52Zr (wt.%, GW102K) alloy with high RE content presenting prominent combination of strength and ductility, realized by tailored nanoprecipitates enabled by optimized heat treatment procedures. Specifically, the solution-treated sample exhibits excellent ductility with an elongation (EL) of 14.6 ± 0.1%, while the aging-treated sample at 200 ℃ for 58h achieves an ultra-high ultimate tensile strength (UTS) of 371 ± 1.5 MPa. Besides, the aging-treated sample at 250 ℃ for 16h attains a good strength-ductility synergy with an UTS of 316 ± 2.1 MPa and an EL of 8.5 ± 0.1%. Particularly, the evolution mechanisms of precipitation response induced by various aging parameters and deformation behavior caused by nanoprecipitates type were also systematically revealed. The excellent ductility resulted from coordinating localized strains facilitated by active slip activity, the ultra-high strength should be ascribed to the dense nano-β' hampering dislocation motion, while the shearable nano-β1 contributed to the good strength-ductility synergy. This work thus offers insightful understanding into the nanoprecipitates manipulation and performance tailoring for the wire-arc DED preparation of large-sized Mg-Gd-Y-Zr component with complex geometries.","PeriodicalId":52353,"journal":{"name":"International Journal of Extreme Manufacturing","volume":null,"pages":null},"PeriodicalIF":16.1000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Extreme Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/2631-7990/ad35fd","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

Mg-Gd-Y-Zr alloy, as a typical magnesium rare-earth (Mg-RE) alloy, is gaining popularity in the advanced equipment manufacturing fields owing to their noticeable age-hardening properties and high specific strength. However, it is extremely challenging to prepare wrought components with large dimensions and complex shapes because of the poor room-temperature processability of Mg-Gd-Y-Zr alloy. Herein, we report a wire-arc directed energy deposited (DED) Mg-10.45Gd-2.27Y-0.52Zr (wt.%, GW102K) alloy with high RE content presenting prominent combination of strength and ductility, realized by tailored nanoprecipitates enabled by optimized heat treatment procedures. Specifically, the solution-treated sample exhibits excellent ductility with an elongation (EL) of 14.6 ± 0.1%, while the aging-treated sample at 200 ℃ for 58h achieves an ultra-high ultimate tensile strength (UTS) of 371 ± 1.5 MPa. Besides, the aging-treated sample at 250 ℃ for 16h attains a good strength-ductility synergy with an UTS of 316 ± 2.1 MPa and an EL of 8.5 ± 0.1%. Particularly, the evolution mechanisms of precipitation response induced by various aging parameters and deformation behavior caused by nanoprecipitates type were also systematically revealed. The excellent ductility resulted from coordinating localized strains facilitated by active slip activity, the ultra-high strength should be ascribed to the dense nano-β' hampering dislocation motion, while the shearable nano-β1 contributed to the good strength-ductility synergy. This work thus offers insightful understanding into the nanoprecipitates manipulation and performance tailoring for the wire-arc DED preparation of large-sized Mg-Gd-Y-Zr component with complex geometries.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过调整时效程序揭示线弧定向能沉积 Mg-Gd-Y-Zr 合金的沉淀行为和机械响应
作为一种典型的镁稀土(Mg-RE)合金,Mg-Gd-Y-Zr 合金具有明显的时效硬化特性和高比强度,因此在先进设备制造领域越来越受欢迎。然而,由于 Mg-Gd-Y-Zr 合金的室温加工性较差,制备大尺寸和复杂形状的锻造部件极具挑战性。在此,我们报告了一种线弧定向能沉积(DED)Mg-10.45Gd-2.27Y-0.52Zr(重量百分比,GW102K)合金,该合金具有较高的 RE 含量,通过优化的热处理程序实现了量身定制的纳米沉淀物,呈现出突出的强度和延展性组合。具体来说,固溶处理样品具有出色的延展性,其伸长率(EL)为 14.6 ± 0.1%,而在 200 ℃ 下时效处理 58 小时的样品则达到了 371 ± 1.5 兆帕的超高极限拉伸强度(UTS)。此外,在 250 ℃ 下时效处理 16 小时的样品具有良好的强度-电导率协同作用,其 UTS 为 316 ± 2.1 MPa,EL 为 8.5 ± 0.1%。此外,还系统地揭示了各种老化参数诱导的析出反应的演变机制以及纳米沉淀物类型引起的变形行为。优异的延展性源于主动滑移活动促进的局部应变协调,超高强度应归因于致密的纳米β'阻碍了位错运动,而可剪切的纳米β1则促成了良好的强度-延展性协同作用。因此,这项工作为线弧 DED 制备具有复杂几何形状的大尺寸 Mg-Gd-Y-Zr 成分提供了对纳米沉淀物操作和性能定制的深刻理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Extreme Manufacturing
International Journal of Extreme Manufacturing Engineering-Industrial and Manufacturing Engineering
CiteScore
17.70
自引率
6.10%
发文量
83
审稿时长
12 weeks
期刊介绍: The International Journal of Extreme Manufacturing (IJEM) focuses on publishing original articles and reviews related to the science and technology of manufacturing functional devices and systems with extreme dimensions and/or extreme functionalities. The journal covers a wide range of topics, from fundamental science to cutting-edge technologies that push the boundaries of currently known theories, methods, scales, environments, and performance. Extreme manufacturing encompasses various aspects such as manufacturing with extremely high energy density, ultrahigh precision, extremely small spatial and temporal scales, extremely intensive fields, and giant systems with extreme complexity and several factors. It encompasses multiple disciplines, including machinery, materials, optics, physics, chemistry, mechanics, and mathematics. The journal is interested in theories, processes, metrology, characterization, equipment, conditions, and system integration in extreme manufacturing. Additionally, it covers materials, structures, and devices with extreme functionalities.
期刊最新文献
Design and micromanufacturing technologies of focused piezoelectric ultrasound transducers for biomedical applications Design and additive manufacturing of bionic hybrid structure inspired by cuttlebone to achieve superior mechanical properties and shape memory function Holistic and localized preparation methods for triboelectric sensors: principles, applications and perspectives Recent Advances in Fabricating High-Performance Triboelectric Nanogenerators via Modulating Surface Charge Density Laser-Forged Transformation and Encapsulation of Nanoalloys: Pioneering Robust Wideband Electromagnetic Wave Absorption and Shielding from GHz to THz
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1