Jasper Muller;Gabriele Di Rosa;Ognjen Jovanovic;Mario Wenning;Achim Autenrieth;Jorg-Peter Elbers;Carmen Mas-Machuca
{"title":"Physical-layer-aware multi-band optical network planning framework for rate-adaptive transceivers","authors":"Jasper Muller;Gabriele Di Rosa;Ognjen Jovanovic;Mario Wenning;Achim Autenrieth;Jorg-Peter Elbers;Carmen Mas-Machuca","doi":"10.1364/JOCN.514026","DOIUrl":null,"url":null,"abstract":"Flexible-grid elastic optical networks (EONs) have recently been widely deployed to support the growing demand for bandwidth-intensive applications. For cost-efficient scaling of the network capacity, multi-band systems are a promising solution. Optimized utilization of EONs is required to delay cost-extensive network upgrades and to lower cost and power consumption. Next-generation bandwidth-variable transceivers (BVTs) will offer increased adaptivity in symbol rate and modulation through techniques such as probabilistic shaping (PS). In this work, we investigate the impact of increased configuration granularity on optical networks. We account for practical implementation considerations of BVT configurations for estimating the required signal-to-noise ratio. Additionally, an optimization algorithm is presented that selects the most efficient configuration for each considered data rate and bandwidth combination. We utilize advanced quality of transmission estimation modeling to evaluate PS configurations in multi-band systems with optimized launch power distributions. We present results of network planning studies for C-band systems in a national and a continental optical backbone network topology considering different granularities of the configurations. Our analysis confirms that finer modulation-based rate-adaptivity results in substantial resource savings, decreasing the number of necessary lightpaths by at most 13% in C-band EONs. Additional savings are observed in multi-band systems, showing further increased savings in the number of required lightpaths of up to 20%. In contrast, increased symbol rate granularity only results in minor savings.","PeriodicalId":50103,"journal":{"name":"Journal of Optical Communications and Networking","volume":"16 5","pages":"B71-B80"},"PeriodicalIF":4.0000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Optical Communications and Networking","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10496397/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
Flexible-grid elastic optical networks (EONs) have recently been widely deployed to support the growing demand for bandwidth-intensive applications. For cost-efficient scaling of the network capacity, multi-band systems are a promising solution. Optimized utilization of EONs is required to delay cost-extensive network upgrades and to lower cost and power consumption. Next-generation bandwidth-variable transceivers (BVTs) will offer increased adaptivity in symbol rate and modulation through techniques such as probabilistic shaping (PS). In this work, we investigate the impact of increased configuration granularity on optical networks. We account for practical implementation considerations of BVT configurations for estimating the required signal-to-noise ratio. Additionally, an optimization algorithm is presented that selects the most efficient configuration for each considered data rate and bandwidth combination. We utilize advanced quality of transmission estimation modeling to evaluate PS configurations in multi-band systems with optimized launch power distributions. We present results of network planning studies for C-band systems in a national and a continental optical backbone network topology considering different granularities of the configurations. Our analysis confirms that finer modulation-based rate-adaptivity results in substantial resource savings, decreasing the number of necessary lightpaths by at most 13% in C-band EONs. Additional savings are observed in multi-band systems, showing further increased savings in the number of required lightpaths of up to 20%. In contrast, increased symbol rate granularity only results in minor savings.
期刊介绍:
The scope of the Journal includes advances in the state-of-the-art of optical networking science, technology, and engineering. Both theoretical contributions (including new techniques, concepts, analyses, and economic studies) and practical contributions (including optical networking experiments, prototypes, and new applications) are encouraged. Subareas of interest include the architecture and design of optical networks, optical network survivability and security, software-defined optical networking, elastic optical networks, data and control plane advances, network management related innovation, and optical access networks. Enabling technologies and their applications are suitable topics only if the results are shown to directly impact optical networking beyond simple point-to-point networks.