{"title":"Design with low cost of equipment for metro filterless optical networks","authors":"Oleg Karandin;Omran Ayoub;Memedhe Ibrahimi;Andrea Castoldi;Rosanna Pastorelli;Francesco Musumeci;Massimo Tornatore","doi":"10.1364/JOCN.527360","DOIUrl":null,"url":null,"abstract":"Emerging 5G services are pressuring optical metro networks with unprecedented capacity requirements. To moderate the growth of operators’ expenses, several technical directions to design low-cost optical networks are being investigated. In this study, we elaborate on what we believe to be a novel approach to designing low-cost metro networks by jointly (i) removing costly wavelength selective switches (WSSs) and enforcing filterless optical network (FON) architecture, (ii) reducing the number of optical amplifiers (OAs), and (iii) reducing the number of installed transponders by intelligently placing amplifiers to maximize signal quality (SNR), so as to employ higher-order modulation formats. To quantify the achievable cost-reduction, we develop a quality-of-transmission (QoT)-aware planning tool, based on a genetic algorithm, for the joint optimization of fiber tree establishment (inherent to FON), OA placement, and transponder upgrades, considering multiyear traffic evolution. Results obtained over realistic metro topologies show that the proposed design achieves overall (8%–17%) equipment cost savings compared to baseline optical network deployment with WSSs in nodes and conventional placement of OAs.","PeriodicalId":50103,"journal":{"name":"Journal of Optical Communications and Networking","volume":"17 3","pages":"198-208"},"PeriodicalIF":4.0000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Optical Communications and Networking","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10896984/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
Emerging 5G services are pressuring optical metro networks with unprecedented capacity requirements. To moderate the growth of operators’ expenses, several technical directions to design low-cost optical networks are being investigated. In this study, we elaborate on what we believe to be a novel approach to designing low-cost metro networks by jointly (i) removing costly wavelength selective switches (WSSs) and enforcing filterless optical network (FON) architecture, (ii) reducing the number of optical amplifiers (OAs), and (iii) reducing the number of installed transponders by intelligently placing amplifiers to maximize signal quality (SNR), so as to employ higher-order modulation formats. To quantify the achievable cost-reduction, we develop a quality-of-transmission (QoT)-aware planning tool, based on a genetic algorithm, for the joint optimization of fiber tree establishment (inherent to FON), OA placement, and transponder upgrades, considering multiyear traffic evolution. Results obtained over realistic metro topologies show that the proposed design achieves overall (8%–17%) equipment cost savings compared to baseline optical network deployment with WSSs in nodes and conventional placement of OAs.
期刊介绍:
The scope of the Journal includes advances in the state-of-the-art of optical networking science, technology, and engineering. Both theoretical contributions (including new techniques, concepts, analyses, and economic studies) and practical contributions (including optical networking experiments, prototypes, and new applications) are encouraged. Subareas of interest include the architecture and design of optical networks, optical network survivability and security, software-defined optical networking, elastic optical networks, data and control plane advances, network management related innovation, and optical access networks. Enabling technologies and their applications are suitable topics only if the results are shown to directly impact optical networking beyond simple point-to-point networks.