V. C. Siqueira, Diogo Santos Crippa, G. A. Mabasso, Eduardo da Silva Westemaier, E. A. S. Martins, Vanderleia Schoeninger, Larissa Kathleen de Castro, Mariana Zampar Toledo
{"title":"Drying kinetics and mass transfer parameters of mung beans dried using a convective dryer","authors":"V. C. Siqueira, Diogo Santos Crippa, G. A. Mabasso, Eduardo da Silva Westemaier, E. A. S. Martins, Vanderleia Schoeninger, Larissa Kathleen de Castro, Mariana Zampar Toledo","doi":"10.5327/fst.00169","DOIUrl":null,"url":null,"abstract":"Convective drying of mung bean seeds was conducted to investigate drying kinetics and mass transfer parameters at temperatures of 40, 50, 60, 70, and 80°C and a fixed air velocity of 1.2 m s-1. Drying characteristics were determined by drying rate, moisture ratio, diffusion coefficient, activation energy, Biot number, and mass transfer coefficient. Drying models such as Newton, Page, Henderson and Pabis, Logarithmic, Midilli, Two-term, and Diffusion approximation were applied and fitted to the moisture ratio of the experimental data. The drying rate was significantly affected by the drying temperature. The Midilli model was considered the most suitable for experimental drying curves. The effective moisture diffusivity ranged from 3.19×10-9 to 10.76×10-9 m2 s-1, with an activation energy of 59.78 kJ mol-1. Similar to the mass transfer coefficient, the Biot number increased with increasing drying temperature. The simultaneous transfer of heat and mass was controlled by diffusion and surface.","PeriodicalId":12404,"journal":{"name":"Food Science and Technology","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Science and Technology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.5327/fst.00169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
Convective drying of mung bean seeds was conducted to investigate drying kinetics and mass transfer parameters at temperatures of 40, 50, 60, 70, and 80°C and a fixed air velocity of 1.2 m s-1. Drying characteristics were determined by drying rate, moisture ratio, diffusion coefficient, activation energy, Biot number, and mass transfer coefficient. Drying models such as Newton, Page, Henderson and Pabis, Logarithmic, Midilli, Two-term, and Diffusion approximation were applied and fitted to the moisture ratio of the experimental data. The drying rate was significantly affected by the drying temperature. The Midilli model was considered the most suitable for experimental drying curves. The effective moisture diffusivity ranged from 3.19×10-9 to 10.76×10-9 m2 s-1, with an activation energy of 59.78 kJ mol-1. Similar to the mass transfer coefficient, the Biot number increased with increasing drying temperature. The simultaneous transfer of heat and mass was controlled by diffusion and surface.