首页 > 最新文献

Food Science and Technology最新文献

英文 中文
From the President and IFST News 来自总统和IFST新闻
Q2 Agricultural and Biological Sciences Pub Date : 2024-12-05 DOI: 10.1002/fsat.3804_3.x
<p><b><i>A Recipe for Health: Fixing a Broken Food System</i></b></p><p>The House of Lords report ‘Recipe for Health: A plan to fix our broken food system’ was published on the 24 October 2024. Its findings are reverberating around the food sector. The report finds that obesity and diet related diseases are a public health emergency that costs society billions each year in healthcare costs and lost productivity. It sets out a plan how to fix it so we can all eat better diets and have healthier lives. The government has two months to respond. We are undoubtedly in a public health crisis. The NHS will be under ever growing pressure unless we act on the rising tide of obesity. A subject which resonates personally with me.</p><p>I have worked in the public health sector for over 40 years. The challenges appear to be growing and more challenging. Smoking, poor diet, physical inactivity and harmful alcohol use are the leading risk factors of preventable ill health and mortality in the UK. All of these risk factors are socially patterned and have complex multiple causes, including structural social and economic conditions. The Health Survey for England 2021 estimates that 25.9% of adults in England are obese and a further 37.9% are overweight but not obese. Obesity is a global and complex public health concern. It is associated with reduced life expectancy and is a risk factor for a range of chronic diseases, including cardiovascular disease, type 2 diabetes, cancer, liver, and respiratory disease, and can also impact on mental health. There is no single silver bullet to resolve the problem.</p><p>In 2022 to 2023, 64.0% of adults aged 18 years and over in England were estimated to be overweight or living with obesity. This is similar to 2021 to 2022 (63.8%) but there has been an upward trend since 2015 to 2016 (61.2%). In 2022 to 2023 26.2% of adults were estimated to be living with obesity. This is similar to 2021 to 2022 (25.9%) but, as with the prevalence of overweight (including obesity), there has been an upward trend since 2015 to 2016 (22.6%). Globally obesity has tripled since 1975 and by 2016 13% were obese. This in a world where millions go to bed hungry.</p><p>I speak as someone that has struggled with my weight over the years. In my 30s I managed to hit 25 stone, then I stopped weighing myself as it was upsetting me., I am now just 15 ½ stone which is about right for my BMI with a height of 6‘6“. I often used to argue that I was not overweight, just under height. I always knew what was causing my obesity. I was informed but did not have the discipline to take action. It is only a change in the psychomotor which I believe elicits action. Losing weight is not difficult if you can motivate yourself. But this is no mean task!</p><p>Resolving obesity is a daunting challenge. There may well be future clinical solutions to the problem. Appetite suppressing drugs containing glucagon like peptide 1 (GLP-1) such as Ozempic look set to impact the globa
英国上议院于2024年10月24日发布了一份名为《健康配方:修复我们破碎的食物系统的计划》的报告。其研究结果在食品行业引起了反响。该报告发现,肥胖和饮食相关疾病是一种突发公共卫生事件,每年给社会造成数十亿美元的医疗费用和生产力损失。它制定了一个如何解决这个问题的计划,这样我们都能吃得更好,生活得更健康。政府有两个月的时间做出回应。毫无疑问,我们正处于公共卫生危机之中。除非我们对不断上升的肥胖趋势采取行动,否则国民保健服务将面临越来越大的压力。一个能引起我个人共鸣的话题。我在公共卫生部门工作了40多年。面临的挑战似乎越来越多,而且更具挑战性。在英国,吸烟、不良饮食、缺乏运动和有害饮酒是导致可预防疾病和死亡的主要风险因素。所有这些风险因素都是社会模式,具有复杂的多重原因,包括结构性社会和经济条件。2021年英国健康调查估计,英国25.9%的成年人肥胖,另有37.9%的人超重但不肥胖。肥胖是一个全球性的、复杂的公共卫生问题。它与预期寿命缩短有关,是一系列慢性疾病的风险因素,包括心血管疾病、2型糖尿病、癌症、肝脏和呼吸系统疾病,还可能影响心理健康。没有解决这个问题的灵丹妙药。据估计,2022年至2023年,英国18岁及以上成年人中有64.0%超重或患有肥胖症。这与2021年至2022年(63.8%)相似,但自2015年至2016年(61.2%)以来呈上升趋势。2022年至2023年,估计有26.2%的成年人患有肥胖症。这与2021年至2022年(25.9%)相似,但与超重(包括肥胖)的患病率一样,2015年至2016年(22.6%)呈上升趋势。自1975年以来,全球肥胖人数增加了两倍,到2016年,肥胖人数达到13%。这是在一个数百万人饿着肚子睡觉的世界里。我以一个多年来一直在与体重作斗争的人的身份说话。在我30多岁的时候,我设法达到了25英石,然后我不再称自己的体重,因为这让我心烦意乱。我现在只有15.5英石,这与我身高6英尺6英寸的体重指数相符。我过去常常争辩说,我并没有超重,只是个子不够高。我一直都知道是什么导致了我的肥胖。我被告知,但没有采取行动的纪律。我认为,这只是精神运动的一种变化,引起了行动。如果你能激励自己,减肥并不难。但这不是一项简单的任务!解决肥胖问题是一项艰巨的挑战。将来很可能会有临床方法来解决这个问题。含有胰高血糖素样肽1 (GLP-1)的食欲抑制药物,如Ozempic,似乎将影响全球食品行业。用户吃得明显少了。少吃是否排除了关键的营养成分,这仍然是一个问号。这可能会导致购买食物的数量和种类大幅减少。我们也看到越来越多的人接受减肥手术,有时也被称为减肥手术。这会使胃变小,这样就会很快感到饱腹感,吃的食物也会更少。报告中没有什么是真正新的,它的许多发现和建议可以在亨利·丁布尔比的国家食品战略报告中找到。我们需要的是一个由政府主导的连贯、有力、可交付的国家粮食战略。不健康饮食的特点是大量摄入高脂肪、高盐和高糖(HFSS)和低纤维的食物。我们必须采取必要的行动,帮助人们选择更健康的食物,以获得更长寿、更健康的生活。在解决我们国家的肥胖危机时,有一件事对我来说是明确的,我们应该让科学和证据基础引导我们的决策。食品科学研究所;科技(IFST)很高兴地宣布,Craig Leadley博士已正式加入我们,成为我们的新任首席执行官,于11月11日开始他的任期。Craig在食品和饮料行业拥有超过20年的经验,在那里他致力于推进技术创新和应用研究。克雷格的旅程始于赫尔的一家工厂,在那里,他对食品科学的热情点燃了他的职业生涯,使他在坎登BRI担任领导职务。作为战略知识开发主管,他协调了重点研究项目并推动了创新,使食品行业受益匪浅。他丰富的经验和对行业的承诺使他成为IFST领导团队的宝贵成员。对于Craig的任命,IFST总裁Sterling Crew表示:“我们很高兴Craig Leadley加入食品科学研究所。作为我们的新首席执行官。 Craig是食品行业中备受尊敬的人物,我们的许多成员都知道他多年来对IFST的杰出贡献。我相信克雷格将为我们的会员带来巨大的价值,并在我们迈向令人兴奋的未来时提供强有力的领导,特别是在我们继续庆祝我们的60周年之际。同时,我谨向署理行政长官任内出色的服务表示衷心的感谢。”Craig分享了他对这个角色的兴奋之情,他说:“我真的很荣幸能加入IFST担任首席执行官。在我的职业生涯中,我一直热衷于推动食品行业的创新和合作,我很荣幸能够领导一个在推进食品科学和技术方面发挥关键作用的组织。我期待着与我们的会员和合作伙伴密切合作,在IFST的坚实基础上继续发展,促进增长,并在我们应对未来的挑战和机遇时支持我们行业的发展。”在Craig的领导下,IFST为食品科学界的持续增长、创新和支持做好了准备。2024年10月11日,食品科学研究所;技术(IFST)与专业食品科学,工程和技术集团(ProFSET)和Mondelēz国际合作,在伯明翰伯恩维尔举办了非常成功的“食品工程师学生启动平台”活动。这个为期一天的项目吸引了来自六所顶尖大学的80多名工程专业学生,为他们提供了一个独特的机会,探索英国食品和饮料行业(英国最大的制造业)多样化和充满活力的职业道路。该活动旨在弥合整个食品行业在工程机会方面的认识差距,该行业拥有超过456,000名员工,向220多个国家出口250亿英镑。发布会在著名的吉百利工厂举行,在Mondelēz国际巧克力研发卓越全球中心的独家幕后观察巧克力生产过程。当天的活动由马丁·罗宾逊(Martyn Robinson),第一科技大学和高级食品科学家(Mondelēz)组织,IFST、ProFSET、百事可乐、食品和饮料联合会(FDF)以及六所大学的代表也参与了活动,他们希望在未来扩大这一项目。来自拉夫堡大学、林肯大学、诺丁汉大学、伯明翰大学、华威大学和阿斯顿大学的学生亲身体验了可可豆烘焙、巧克力精炼、制造、包装机电一体化的复杂工程过程,以及推动行业发展的研发创新。这次身临其境的工厂之旅让他们深入了解了一些世界上最受欢迎的巧克力产品背后的技术挑战和工程专业知识。与此同时,来自各大学、Mondelēz International、百事可乐、IFST和FDF的代表也参加了圆桌会议。议题集中在加强未来的合作和倡议,以吸引来自不同STEM学科的学生进入食品行业,加强对培养未来食品工程人才的共同承诺。ProFSET是由12个专业团体组成的联盟,包括IFST,物理学会(IOP),化学工程师学会(IChemE)和机械工程师学会(IMechE),组织了这次活动,以促进创新和激励新一代的食品和饮料行业专业人士。在2023年首届活动取得成功的基础上,ProFSET将继续致力于知识共享和跨部门合作,在行业内培养终身学习和成长的文化。活动以R&amp;D全球研究副总裁Ian Noble博士激动人心的欢迎辞开始。Mondelēz International的生产力。诺布尔博士指出,食品行业通过多种方式提供充实的职业,影响全球福祉、可持续性和消费者体验。“在Mondelēz国际,我们非常热衷于培养新人才,并引导他们在食品系统中走向长期、有回报的职业生涯,”他分享道。“食品行业的职业不仅必
{"title":"From the President and IFST News","authors":"","doi":"10.1002/fsat.3804_3.x","DOIUrl":"https://doi.org/10.1002/fsat.3804_3.x","url":null,"abstract":"&lt;p&gt;&lt;b&gt;&lt;i&gt;A Recipe for Health: Fixing a Broken Food System&lt;/i&gt;&lt;/b&gt;&lt;/p&gt;&lt;p&gt;The House of Lords report ‘Recipe for Health: A plan to fix our broken food system’ was published on the 24 October 2024. Its findings are reverberating around the food sector. The report finds that obesity and diet related diseases are a public health emergency that costs society billions each year in healthcare costs and lost productivity. It sets out a plan how to fix it so we can all eat better diets and have healthier lives. The government has two months to respond. We are undoubtedly in a public health crisis. The NHS will be under ever growing pressure unless we act on the rising tide of obesity. A subject which resonates personally with me.&lt;/p&gt;&lt;p&gt;I have worked in the public health sector for over 40 years. The challenges appear to be growing and more challenging. Smoking, poor diet, physical inactivity and harmful alcohol use are the leading risk factors of preventable ill health and mortality in the UK. All of these risk factors are socially patterned and have complex multiple causes, including structural social and economic conditions. The Health Survey for England 2021 estimates that 25.9% of adults in England are obese and a further 37.9% are overweight but not obese. Obesity is a global and complex public health concern. It is associated with reduced life expectancy and is a risk factor for a range of chronic diseases, including cardiovascular disease, type 2 diabetes, cancer, liver, and respiratory disease, and can also impact on mental health. There is no single silver bullet to resolve the problem.&lt;/p&gt;&lt;p&gt;In 2022 to 2023, 64.0% of adults aged 18 years and over in England were estimated to be overweight or living with obesity. This is similar to 2021 to 2022 (63.8%) but there has been an upward trend since 2015 to 2016 (61.2%). In 2022 to 2023 26.2% of adults were estimated to be living with obesity. This is similar to 2021 to 2022 (25.9%) but, as with the prevalence of overweight (including obesity), there has been an upward trend since 2015 to 2016 (22.6%). Globally obesity has tripled since 1975 and by 2016 13% were obese. This in a world where millions go to bed hungry.&lt;/p&gt;&lt;p&gt;I speak as someone that has struggled with my weight over the years. In my 30s I managed to hit 25 stone, then I stopped weighing myself as it was upsetting me., I am now just 15 ½ stone which is about right for my BMI with a height of 6‘6“. I often used to argue that I was not overweight, just under height. I always knew what was causing my obesity. I was informed but did not have the discipline to take action. It is only a change in the psychomotor which I believe elicits action. Losing weight is not difficult if you can motivate yourself. But this is no mean task!&lt;/p&gt;&lt;p&gt;Resolving obesity is a daunting challenge. There may well be future clinical solutions to the problem. Appetite suppressing drugs containing glucagon like peptide 1 (GLP-1) such as Ozempic look set to impact the globa","PeriodicalId":12404,"journal":{"name":"Food Science and Technology","volume":"38 4","pages":"8-17"},"PeriodicalIF":0.0,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fsat.3804_3.x","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142851392","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
From Data to Finished Product 从数据到成品
Q2 Agricultural and Biological Sciences Pub Date : 2024-12-05 DOI: 10.1002/fsat.3804_5.x
<p><b><i>Richard Marshall gives an overview on AI and how it is transforming food product development in the UK, enhancing everything from recipe optimisation data-driven innovation. Advanced techniques such as inverse design allow food scientists to create new products by working backwards from desired characteristics, accelerating development and boosting success rates</i></b>.</p><p>Artificial Intelligence (AI) is playing an increasingly significant role in both personal lives and in all areas of industry. Many people will have already used it perhaps unknowingly, for example when using an internet search engine or using automotive parking assistance. AI includes a number of different levels of data manipulation. It forms the basis of expert systems that analyse complex data to produce results. At the next level, machine learning (ML) algorithms learn from data to make predictions or decisions. A more advanced version of machine learning has artificial neural networks (ANN) which mimic human brain function, taking data in, analysing it in some form of ‘black box’ and then presenting the results. More recently, we have seen the development of large language models (LLM) that use natural language inputs and outputs – they ‘understand’ discursive questions. Within such systems, data is often analysed using fuzzy logic when it has varying levels of ‘truth’. AI is very suitable for use in product development particularly using inverse design, that is starting from knowing about products, recipes and ingredients.</p><p>Artificial intelligence (AI) is the simulation of human intelligence in machines. It involves the development of methods and software that enable computers to perceive their environment and react to it. AI aims to mimic human thinking and problem-solving abilities<sup>(</sup><span><sup>1</sup></span><sup>)</sup>.</p><p>AI is becoming more and more prominent in our lives. It has the potential to give significant benefits to the way we live, to make industry more competitive and more efficient in ways that we never imagined a few years ago. As with any emerging technology, there are risks and fears as well as positive opportunities. The UK Government has recognised this and hosted an international conference on AI in 2023<sup>(</sup><span><sup>2</sup></span><sup>)</sup>. We are generally unaware that AI is already playing a major role in many activities. Internet search engines, such as Google, use it to present results to users, often in a way that biases towards favouring advertisers, promoting certain views or suppressing certain sites<sup>(</sup><span><sup>3</sup></span><sup>)</sup>. The Internet of Things (IoT) enables smart devices, such as domestic fridges, smart watches and autonomous vehicles to communicate with the world, sharing data, providing assistance and information. The food industry is no exception in this regard. Robotics has been used for some considerable time to move product around factories, control process operat
食品安全管理系统包括加工、监控、检测、培训和维护。安全依靠 HACCP 来评估危害和发生风险。只有在危险事件发生后,才能通过评估 "滞后指标 "来提高安全性。人工智能的使用可以利用 "先行指标 "采取更加积极主动的方法。这种系统不是独立的,必须与食品安全专家合作。沙门氏菌有超过 2500 个血清型,单核细胞增生李斯特菌也有同样多的依赖于菌株的毒力因子(7)。根据这些作者的说法,人工智能正被用于快速监测鸡肝肉中的微生物污染、快速验证新鲜农产品清洗水的卫生状况、预测食源性疾病的爆发以及预测食品店的食品安全合规性。正如 Flynn(2023 年)(8) 在本期刊上指出的那样,人工智能在防止食品召回、管理食品安全系统或识别鱼类物种方面有许多应用。在农场,一个名为 Chirrup(chirrup.ai)的人工智能系统可用于识别鸟类物种,从而显示生物多样性水平。它们能够通过自然语言与用户交流,并通过学习文本中单词之间的统计关系来工作。它们利用模糊逻辑生成输出。开发工作大约从 2017 年开始,谷歌是最早的开发者之一。他们在 2018 年推出了生成式预训练转换器 1(GPT-1),随后又推出了 GPT-2(2019 年)、GPT-3(2020 年)和 GPT-4(2023 年)。由于担心被滥用,GPT 的访问受到了限制,但 ChatGPT 是免费的公开版本,不过它使用的是 GPT-3.5 的数据,而 GPT-3.5 只到 2022 年。正如 Flynn(2023)(8) 所指出的,ChatGPT 和类似的 LLM 可用于查询食品主题信息。这对食品产品开发 (FPD) 同样适用。不过,免费使用的 ChatGPT 无法提供最新信息,例如,FPD 的市场趋势,因为其数据库已有两年左右的历史。另一方面,询问 "如何使用 ChatGPT 进行食品产品开发 "可以得到一个帮助列表,作为一个起点(表 4)。如果使用 LLM 的付费版本,如 ChatGPT Plus,可以获得更多最新信息。如果使用付费版本的 LLM,如 ChatGPT Plus,可以获得更多最新信息。它可以提供趋势预测、发现新配料和技术、新口味、帮助选择最佳/正确配料、选择加工条件(如烹饪时间和温度)、改善可持续性和碳足迹以及整体市场趋势和消费者偏好(9)。在新产品开发(NPD)的初始阶段,LLMs 可以通过扫描互联网,从博客、论坛、报告、投诉电话和产品用户评论等来源中寻找市场机会,从而产生新颖的想法。法律硕士最擅长分析的一个领域是来自调查的话语数据。他们可以编写客户访谈指南的初稿。有了这些方面的信息,法律硕士就可以提出和评估概念,并将这些概念与公司拥有的研发数据联系起来,从而利用知识产权(IP)。这包括评估市场数据、预测潜在销售额、了解竞争对手的活动以及预测收入和利润。在做出批准决定后,人工智能还可以在创建虚拟原型、设定设计参数、定义开发迭代和优化流程方面发挥进一步的作用。人工智能在食品设计中的最新应用实例包括使用 ML 模型预测巧克力饼干配方的感官评分(10),以及考虑 36 种组合和 22 种感官属性确定理想酸奶酱的最佳条件。ML 模型还被用于预测食谱中配料的共同出现,以发现新的食物搭配。人们在不同场合注意到,新食品在市场上的失败率高达 75%(11)。Al-Sarayeh 等人(2023 年)(10) 认为,了解消费者的需求,并利用这些需求设计出具有适当化学和物理特性的食品,对食品行业来说具有挑战性。他们提出了一种不同的开发新产品的方法,称为 "逆向设计"。 在传统的 NPD 中,感官、营养、健康、便利、心理和社会信息被用来推动新概念的创造。在一个需要多学科知识的迭代过程中,可能会产生一个或多个原型。经过数次开发和加工试验后,产品就生产出来了。反向设计 "从确定产品的预期功能开始,致力于优化设计。为了有效地做到这一点,必须对输入和输出之间的关系进行建模,而这对于人类来说过于复杂,无法手动建模。应用人工智能可以更高效、更有效地开发新产品。来自公共配方数据库、食品成分、结构和分子特性的信息可以通过编码器输入虚拟设计空间。在这个空间中,人工智能可以找到具有目标属性的新产品。结果通过解码器输出,并以新产品配方的形式呈现,其中包括所需加工、感官特性、营养和健康方面的详细信息。然后可以对这些属性进行测量,以确定产品是否符合规范。消费者的反应也可用于评估设计。Al-Sarayeh 等人(2023)(10) 列举了 Marin 等人(2019)(12) 的一个例子,其中食谱的成分、加工方向和视觉特性都是由人工智能深度学习模型编码的。
{"title":"From Data to Finished Product","authors":"","doi":"10.1002/fsat.3804_5.x","DOIUrl":"https://doi.org/10.1002/fsat.3804_5.x","url":null,"abstract":"&lt;p&gt;&lt;b&gt;&lt;i&gt;Richard Marshall gives an overview on AI and how it is transforming food product development in the UK, enhancing everything from recipe optimisation data-driven innovation. Advanced techniques such as inverse design allow food scientists to create new products by working backwards from desired characteristics, accelerating development and boosting success rates&lt;/i&gt;&lt;/b&gt;.&lt;/p&gt;&lt;p&gt;Artificial Intelligence (AI) is playing an increasingly significant role in both personal lives and in all areas of industry. Many people will have already used it perhaps unknowingly, for example when using an internet search engine or using automotive parking assistance. AI includes a number of different levels of data manipulation. It forms the basis of expert systems that analyse complex data to produce results. At the next level, machine learning (ML) algorithms learn from data to make predictions or decisions. A more advanced version of machine learning has artificial neural networks (ANN) which mimic human brain function, taking data in, analysing it in some form of ‘black box’ and then presenting the results. More recently, we have seen the development of large language models (LLM) that use natural language inputs and outputs – they ‘understand’ discursive questions. Within such systems, data is often analysed using fuzzy logic when it has varying levels of ‘truth’. AI is very suitable for use in product development particularly using inverse design, that is starting from knowing about products, recipes and ingredients.&lt;/p&gt;&lt;p&gt;Artificial intelligence (AI) is the simulation of human intelligence in machines. It involves the development of methods and software that enable computers to perceive their environment and react to it. AI aims to mimic human thinking and problem-solving abilities&lt;sup&gt;(&lt;/sup&gt;&lt;span&gt;&lt;sup&gt;1&lt;/sup&gt;&lt;/span&gt;&lt;sup&gt;)&lt;/sup&gt;.&lt;/p&gt;&lt;p&gt;AI is becoming more and more prominent in our lives. It has the potential to give significant benefits to the way we live, to make industry more competitive and more efficient in ways that we never imagined a few years ago. As with any emerging technology, there are risks and fears as well as positive opportunities. The UK Government has recognised this and hosted an international conference on AI in 2023&lt;sup&gt;(&lt;/sup&gt;&lt;span&gt;&lt;sup&gt;2&lt;/sup&gt;&lt;/span&gt;&lt;sup&gt;)&lt;/sup&gt;. We are generally unaware that AI is already playing a major role in many activities. Internet search engines, such as Google, use it to present results to users, often in a way that biases towards favouring advertisers, promoting certain views or suppressing certain sites&lt;sup&gt;(&lt;/sup&gt;&lt;span&gt;&lt;sup&gt;3&lt;/sup&gt;&lt;/span&gt;&lt;sup&gt;)&lt;/sup&gt;. The Internet of Things (IoT) enables smart devices, such as domestic fridges, smart watches and autonomous vehicles to communicate with the world, sharing data, providing assistance and information. The food industry is no exception in this regard. Robotics has been used for some considerable time to move product around factories, control process operat","PeriodicalId":12404,"journal":{"name":"Food Science and Technology","volume":"38 4","pages":"22-25"},"PeriodicalIF":0.0,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fsat.3804_5.x","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142860294","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Not all bubbles are equal: bread texture and the science of baking 不是所有的泡沫都是一样的:面包的质地和烘焙的科学
Q2 Agricultural and Biological Sciences Pub Date : 2024-12-05 DOI: 10.1002/fsat.3804_10.x
<p><b><i>Bogdan Dobraszczyk explores the science behind bread-making, focusing on how the formation and development of gas bubbles during mixing, proofing, and baking influence the texture, volume, and quality of the final product, with insights into the role of dough rheology, flour quality, and baking techniques</i></b>.</p><p>Bread is a staple food that was consumed by 80% of the world's population during the year 2022, and a principal source of carbohydrate and protein. It comes in various shapes, flavours and textures according to various culinary preferences in different countries, from the typical white and brown bread consumed in the UK and USA, baguettes and brioche in France, rye breads in Eastern and Northern Europe to the flatbreads of North Africa, the Near East and India.</p><p>Bread is strongly associated with the development of agriculture and a move away from a hunter gatherer lifestyle. It was central to the formation of early human societies. From the Middle East, where wheat and other cereals were first domesticated, cultivation spread north and west, to Europe and North Africa, and east toward East Asia.</p><p>Bread is mainly composed of air. During mixing, bubbles are formed within the dough, and as the dough proves (ferments), these bubbles expand and grow. The size, distribution, and development of these bubbles play a crucial role in shaping the bread's final quality. They determine its texture, mouthfeel, and overall volume, making the process of bubble formation one of the key factors in creating the perfect loaf.</p><p>The images below show (Figure 2, 1) a digital reconstruction of bread texture, and (Figure 2b) an electron microscope picture showing the typical open foam structure of white bread. It is clear that not all bubbles are equal – there is quite a large distribution of shapes and sizes, which will have an impact on the texture of the bread. The higher magnification electron microscope picture of bubbles in white bread shows that the bubbles are interconnected, which indicates that a dynamic process of bubble expansion occurs during the baking process where bubbles interact with each other.</p><p>Several different ingredients are used by commercial bakers with the aim of <i>improving</i> the bread. This generally means increased bubble stability in the dough to allow for the mechanical shocks generated during moving the dough around in an industrial process and the rapid proofing times required for fast throughput. An artisan baker is less likely to use improvers as they can easily adapt their processing conditions such as proof time and temperature to suit their particular recipe. A basic bread recipe usually only contains flour (which is mainly starch and gluten), salt, yeast and water, but commercial bakers will add:</p><p>• <b>Emulsifiers</b> in bread create a stable and strong dough that retains more gas. The result of this is a light and soft crumb. Emulsifiers also slow down starch retrogradation, whic
Bogdan Dobraszczyk探索面包制作背后的科学,重点关注混合,打样和烘焙过程中气泡的形成和发展如何影响最终产品的质地,体积和质量,并深入了解面团流变学,面粉质量和烘焙技术的作用。面包是2022年全球80%人口消费的主食,也是碳水化合物和蛋白质的主要来源。根据不同国家的不同烹饪偏好,它有各种形状、口味和质地,从英国和美国消费的典型白面包和黑面包,法国的法棍面包和奶油蛋卷,东欧和北欧的黑麦面包,到北非、近东和印度的扁面包。面包与农业的发展以及从狩猎采集生活方式的转变密切相关。它是早期人类社会形成的核心。从小麦和其他谷物最早被驯化的中东开始,种植向北和向西传播,到达欧洲和北非,向东传播到东亚。面包的主要成分是空气。在混合过程中,面团内形成气泡,随着面团的发酵,这些气泡扩大和增长。这些气泡的大小、分布和发展对面包的最终质量起着至关重要的作用。它们决定了面包的质地、口感和整体体积,使气泡形成的过程成为制作完美面包的关键因素之一。下图(图2,1)是面包纹理的数字重建图,(图2b)是白面包典型的开放式泡沫结构的电子显微镜图。很明显,并不是所有的气泡都是一样的——气泡的形状和大小分布很大,这将对面包的质地产生影响。白面包中气泡的高倍电镜图显示,气泡是相互连接的,这表明在烘烤过程中,气泡之间发生了相互作用的动态气泡膨胀过程。商业面包师会使用几种不同的配料来改善面包的质量。这通常意味着增加面团中的气泡稳定性,以允许在工业过程中移动面团时产生的机械冲击,以及快速吞吐量所需的快速打样时间。手工烘焙师不太可能使用改进剂,因为他们可以很容易地调整加工条件,如发酵时间和温度,以适应他们的特定配方。基本的面包配方通常只包含面粉(主要是淀粉和面筋)、盐、酵母和水,但商业面包师会添加:•面包中的乳化剂会使面团稳定而结实,保留更多的气体。这样做的结果是一个又轻又软的面包屑。乳化剂还可以减缓淀粉的退化,这是面包变不新鲜时的干燥过程。-脂肪酸的单甘油酯和双甘油酯。脂肪酸的单甘油酯和双甘油酯是面包和食品生产中最常见的乳化剂。它们也是表面活性剂,被认为可以稳定气泡/空气界面。•酶(如淀粉酶和蛋白酶)。淀粉酶提高复杂淀粉分解成单糖的速率,从而提高发酵速率。蛋白酶通过降解部分面筋来提高面团的延展性。•抗坏血酸增强面筋网络,允许在烘焙过程中更多的膨胀。从传统的手挤压测试到仪器压缩和压痕测试,工业中使用了大量的测试来评估面包的质地。面包的纹理图像分析越来越多地用于对面包的气泡结构进行成像。这种方法可以提供额外的信息,如气泡大小分布,细胞壁厚度分布,气泡的方向和产品的总密度。这可以很容易地完成扫描面包片使用平板扫描仪和适当的软件。根据配方和烘焙条件的不同,面包可以产生许多不同的质地。图7显示了不同类型的面包质地:(1)商业切片白面包,质地细腻,有许多小气泡;(2)法国法棍面包,质地更开放,有许多大气泡;(3)酸面包,质地开放,细胞壁厚;(4)德国黑麦粗磨制成的粗面包,质地非常致密。这些不同类型的面包的口感会根据气泡大小和细胞壁厚度而有所不同。非小麦面包通常密度大,气泡膨胀小,因为小麦面筋由于其独特的流变性能使气泡膨胀。
{"title":"Not all bubbles are equal: bread texture and the science of baking","authors":"","doi":"10.1002/fsat.3804_10.x","DOIUrl":"https://doi.org/10.1002/fsat.3804_10.x","url":null,"abstract":"&lt;p&gt;&lt;b&gt;&lt;i&gt;Bogdan Dobraszczyk explores the science behind bread-making, focusing on how the formation and development of gas bubbles during mixing, proofing, and baking influence the texture, volume, and quality of the final product, with insights into the role of dough rheology, flour quality, and baking techniques&lt;/i&gt;&lt;/b&gt;.&lt;/p&gt;&lt;p&gt;Bread is a staple food that was consumed by 80% of the world's population during the year 2022, and a principal source of carbohydrate and protein. It comes in various shapes, flavours and textures according to various culinary preferences in different countries, from the typical white and brown bread consumed in the UK and USA, baguettes and brioche in France, rye breads in Eastern and Northern Europe to the flatbreads of North Africa, the Near East and India.&lt;/p&gt;&lt;p&gt;Bread is strongly associated with the development of agriculture and a move away from a hunter gatherer lifestyle. It was central to the formation of early human societies. From the Middle East, where wheat and other cereals were first domesticated, cultivation spread north and west, to Europe and North Africa, and east toward East Asia.&lt;/p&gt;&lt;p&gt;Bread is mainly composed of air. During mixing, bubbles are formed within the dough, and as the dough proves (ferments), these bubbles expand and grow. The size, distribution, and development of these bubbles play a crucial role in shaping the bread's final quality. They determine its texture, mouthfeel, and overall volume, making the process of bubble formation one of the key factors in creating the perfect loaf.&lt;/p&gt;&lt;p&gt;The images below show (Figure 2, 1) a digital reconstruction of bread texture, and (Figure 2b) an electron microscope picture showing the typical open foam structure of white bread. It is clear that not all bubbles are equal – there is quite a large distribution of shapes and sizes, which will have an impact on the texture of the bread. The higher magnification electron microscope picture of bubbles in white bread shows that the bubbles are interconnected, which indicates that a dynamic process of bubble expansion occurs during the baking process where bubbles interact with each other.&lt;/p&gt;&lt;p&gt;Several different ingredients are used by commercial bakers with the aim of &lt;i&gt;improving&lt;/i&gt; the bread. This generally means increased bubble stability in the dough to allow for the mechanical shocks generated during moving the dough around in an industrial process and the rapid proofing times required for fast throughput. An artisan baker is less likely to use improvers as they can easily adapt their processing conditions such as proof time and temperature to suit their particular recipe. A basic bread recipe usually only contains flour (which is mainly starch and gluten), salt, yeast and water, but commercial bakers will add:&lt;/p&gt;&lt;p&gt;•\t&lt;b&gt;Emulsifiers&lt;/b&gt; in bread create a stable and strong dough that retains more gas. The result of this is a light and soft crumb. Emulsifiers also slow down starch retrogradation, whic","PeriodicalId":12404,"journal":{"name":"Food Science and Technology","volume":"38 4","pages":"40-43"},"PeriodicalIF":0.0,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fsat.3804_10.x","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142851394","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
60 Years of Innovation: How Technology and Sustainability Are Redefining Food 60年的创新:技术和可持续性如何重新定义食品
Q2 Agricultural and Biological Sciences Pub Date : 2024-12-05 DOI: 10.1002/fsat.3804_4.x
<p><b><i>As the IFST celebrates its 60th year anniversary, Food Innovation SIG member Sarah Gaunt and Chair Susan Arkley present some of the key innovations from the past 60 years in the familiar themes of health, packaging, processing, regulations and mainstream alternatives. Guest contributors Wayne Martindale, Craig Leadley, Jake Norman, Tom Hollands and Gavin Milligan comment on the innovations driving change in the industry today and in the future</i></b>.</p><p>The food industry's evolution is one of continuous innovation, discovery, and adaptation. From chance findings to targeted scientific efforts, each advancement has shaped how we produce, consume, and view food today. This journey has brought breakthroughs in health products, packaging, alternative foods, processing, technology, and regulation. However, progress also presents challenges, such as the demand for sustainable solutions and strategies to tackle increasing environmental and public health issues.</p><p>As the link between food and health became clearer in the late 20th century, scientific advances and growing consumer demands fuelled the creation of products focused on well-being. Some breakthroughs happened by chance, others through research.</p><p>In 1976, an accidental discovery revolutionised sweetness engineering. Tate & Lyle scientists, Leslie Hough and Shashikant Phadnis at Queen Elizabeth College, were exploring sucrose uses<sup>(</sup><span><sup>1</sup></span><sup>)</sup>. When Phadnis misheard ‘test’ as ‘taste,’ he found a chlorinated sugar compound to be extremely sweet, leading to sucralose (E955), a non-nutritive sweetener 320 to 1,000 times sweeter than sucrose. Stable under heat and pH changes, it became essential in baking and shelf-stable foods, reshaping low-calorie sweeteners.</p><p>Interest in probiotics, first proposed by Elie Metchnikoff in 1907, surged after 1980, as studies explored gut health benefits<sup>(</sup><span><sup>2</sup></span><sup>)</sup>. Though popular, many health claims are contested, with the European Food Safety Authority (EFSA) rejecting several for lacking scientific evidence, stressing the need for rigorous research. The journey into gut health continued with Marcel Roberfroid who, in 1995 discovered prebiotics: non-digestible fibres promoting beneficial bacteria growth in the colon, often found in everyday foods. These play a key role in gut health<sup>(</sup><span><sup>3</sup></span><sup>)</sup>.</p><p>As health focus grew, demand for functional foods—offering benefits beyond nutrition—boomed with EFSA imposing strict regulations to ensure health claims are scientifically supported<sup>(</sup><span><sup>4</sup></span><sup>)</sup>.</p><p>In the 1990s, research revealed the risks of trans fats, linking them to coronary heart disease. This prompted a global push to eliminate trans fats, showing how the industry responds to science and consumer demand for healthier choices<sup>(</sup><span><sup>5</sup></span><sup>)</sup>.</p><p>
在国际食品科技学会庆祝成立 60 周年之际,食品创新小组成员萨拉-高特(Sarah Gaunt)和主席苏珊-阿克利(Susan Arkley)介绍了过去 60 年中在健康、包装、加工、法规和主流替代品等熟悉主题方面的一些重要创新。特邀撰稿人韦恩-马丁代尔(Wayne Martindale)、克雷格-利德利(Craig Leadley)、杰克-诺曼(Jake Norman)、汤姆-霍兰德(Tom Hollands)和加文-米利根(Gavin Milligan)对推动当今和未来行业变革的创新进行了评论。从偶然的发现到有针对性的科学努力,每一次进步都塑造了我们今天生产、消费和看待食品的方式。这一历程带来了保健产品、包装、替代食品、加工、技术和监管方面的突破。然而,进步也带来了挑战,例如需要可持续的解决方案和战略来解决日益严重的环境和公共卫生问题。20 世纪末,随着食品与健康之间的联系越来越清晰,科学进步和消费者日益增长的需求推动了以健康为重点的产品的诞生。1976年,一个偶然的发现彻底改变了甜味工程。Tate &amp; Lyle 的科学家 Leslie Hough 和伊丽莎白女王学院的 Shashikant Phadnis 正在探索蔗糖的用途(1)。当 Phadnis 错把 "测试 "听成 "品尝 "时,他发现一种氯化糖化合物甜度极高,这就是蔗糖素(E955),一种比蔗糖甜 320-1000 倍的非营养甜味剂。蔗糖素(E955)是一种非营养性甜味剂,其甜度是蔗糖的 320 到 1 000 倍。蔗糖素在加热和 pH 值变化条件下保持稳定,因此成为烘焙和保质食品中不可或缺的甜味剂,重塑了低热量甜味剂的形象。虽然益生菌很受欢迎,但许多健康声明却受到质疑,欧洲食品安全局(EFSA)就以缺乏科学证据为由拒绝了几项声明,并强调需要进行严格的研究。1995 年,马塞尔-罗伯弗罗德(Marcel Roberfroid)发现了益生元:促进结肠中有益细菌生长的非消化性纤维,通常存在于日常食品中。随着人们对健康的关注与日俱增,功能性食品的需求也随之激增,欧洲食品安全局(EFSA)制定了严格的法规,以确保健康声明具有科学依据(4)。20 世纪 90 年代,研究揭示了反式脂肪的风险,并将其与冠心病联系在一起。这促使全球推动消除反式脂肪,显示了食品行业如何响应科学和消费者对更健康选择的需求(5)。人们对天然甜味剂的兴趣也在增加,如甜叶菊(Stevia Rebaudiana),这种南美植物已有 1500 多年的历史(6)。20 世纪 70 年代,甜菊糖在日本大受欢迎,取代了糖精等人工甜味剂。甜菊糖于 2011 年在欧洲获得批准,它体现了传统疗法如何作为一种零卡路里的选择进入现代食品技术。1972 年,M&amp;S 食品技术部推出了在包装纸上标注销售日期的做法,很快被其他零售商采用,并最终成为一项法律规定(7)。1973 年,纳撒尼尔-怀斯领导杜邦公司发明了 PET(聚对苯二甲酸乙二酯)饮料瓶,创造了一种能够承受碳酸饮料压力的可回收塑料瓶。1978 年,美国陆军纳蒂克研发司令部开发出了蒸馏袋,为罐头提供了一种灵活的替代品(9)。它由塑料和金属箔制成,可对食品进行无菌包装,2010 年后又重新出现了单份包装袋和小包装袋。为了进一步延长保质期,出现了气调包装(MAP)(10)。1979 年,玛莎百货公司推出了 MAP 肉类包装,包括培根和鱼。最近,2015 年,食品保鲜技术公司(Food Freshness Technology)旗下的 "Its Fresh "开发出一种混合粘土和矿物质的吸附带,用于捕捉水果和蔬菜释放的乙烯气体(11)。这种 "活性包装 "减少了腐败,延长了保质期,满足了消费者和环境的双重需求。20 世纪 60 年代,英国工业家兰克勋爵预计到人口增长导致全球粮食短缺,开始通过发酵将淀粉转化为蛋白质,以开发替代食品。兰克勋爵的研究成果就是昆恩产品的主要成分--霉菌蛋白。1985 年,Quorn 首次以蔬菜馅饼的形式出售,到 1990 年,Quorn 的产品已超过 90 种,为人们提供了一种广为接受的无肉替代食品(12)。 马斯特里赫特大学的科学家们在马克-波斯特教授的领导下,用奶牛干细胞培育肌肉组织,将2万根细条组合成汉堡。2013 年 8 月,世界上第一个实验室培育的汉堡在伦敦烹制并品尝。这一里程碑凸显了培养肉作为可持续蛋白质来源的潜力(13)。预计到2063年,全球人口将达到130亿,因此保证足够的蛋白质至关重要(14)。传统蛋白质来源的生产耗费大量资源,因此人们对细菌、昆虫、霉菌蛋白和实验室培育肉类等替代品的兴趣与日俱增。成功与否取决于安全性、成本、营养、可扩展性和接受度。克雷格-利德利指出,食品系统排放的温室气体占英国总排放量的30%,肉类生产导致气候变化、森林砍伐和生物多样性丧失。仅仅呼吁人们停止食用肉类很可能是无效的。由动物细胞培育而成的人工肉类既能减少对环境的影响,又能满足消费者的喜好,但仍面临高成本、监管障碍和消费者接受度等挑战。英国在这一领域处于领先地位,拥有大量投资,越来越多的公司正朝着商业化方向发展。从 2008 年的小众产品开始,这些食品逐渐成为主流,2014 年英国的销售额达到 1.84 亿英镑,比前一年增长了 15%,反映了消费者偏好的转变(15)。到 1965 年,这种工艺已在英国广泛采用。它彻底改变了低蛋白小麦的使用,使其得以广泛使用,并极大地影响了英国的食品供应。如今,英国 80% 的面包都是用这种方法制作的,充分显示了它对主食制作方式的持久影响。1974 年,第一台家用微波炉投放市场。1940 年,约翰-兰德尔(John Randall)和哈里-布特(Harry Boot)在伯明翰大学研制出高功率微波发生器,微波炉由此诞生。现在,微波炉每年在全球售出 3000 万台。1979 年,玛莎百货公司推出了冰鲜基辅鸡,超越了冷冻食品的范畴,满足了人们日益增长的对方便、家常的需求。从冷冻食品到冰鲜食品的转变得益于库存控制和配送的改进,以及微波炉的兴起,这在 20 世纪 80 年代推动了即食食品的普及(19)。1990 年,高压处理法(HPP)标志着食品安全又向前迈进了一步。这种冷巴氏杀菌法利用水的高压灭活细菌和霉菌,无需加热即可延长保质期,并保持食品的口味和营养。HPP 还有利于冷榨果汁,将其保质期从 2-4 天延长到 30 天左右,同时保持营养价值,吸引了注重健康的消费者(20, 21)。从乔利伍德面包工艺到 HPP,这些技术进步重塑了食品体系,为消费者提供了更新鲜、更方便的选择,同时保证了质量、营养和安全。1999 年的《食品标准法案》在 2000 年成立了食品标准局(FSA),作为一个独立机构,主要负责公共卫生和食品安全,此前曾爆发过重大的食源性疾病(23)。该法案将农业、渔业和食品部的许多职责移交给了食品标准局,确保了行业利益与公共卫生之间更明确的分离。2006 年 12 月通过的《欧洲食品安全局健康声明条例》制定了欧盟范围内的营养和健康声明规则,规定消费者信息必须有科学依据(24)。然而,并非所有创新都得到了广泛接受。转基因作物,如美国 1994 年批准的
{"title":"60 Years of Innovation: How Technology and Sustainability Are Redefining Food","authors":"","doi":"10.1002/fsat.3804_4.x","DOIUrl":"https://doi.org/10.1002/fsat.3804_4.x","url":null,"abstract":"&lt;p&gt;&lt;b&gt;&lt;i&gt;As the IFST celebrates its 60th year anniversary, Food Innovation SIG member Sarah Gaunt and Chair Susan Arkley present some of the key innovations from the past 60 years in the familiar themes of health, packaging, processing, regulations and mainstream alternatives. Guest contributors Wayne Martindale, Craig Leadley, Jake Norman, Tom Hollands and Gavin Milligan comment on the innovations driving change in the industry today and in the future&lt;/i&gt;&lt;/b&gt;.&lt;/p&gt;&lt;p&gt;The food industry's evolution is one of continuous innovation, discovery, and adaptation. From chance findings to targeted scientific efforts, each advancement has shaped how we produce, consume, and view food today. This journey has brought breakthroughs in health products, packaging, alternative foods, processing, technology, and regulation. However, progress also presents challenges, such as the demand for sustainable solutions and strategies to tackle increasing environmental and public health issues.&lt;/p&gt;&lt;p&gt;As the link between food and health became clearer in the late 20th century, scientific advances and growing consumer demands fuelled the creation of products focused on well-being. Some breakthroughs happened by chance, others through research.&lt;/p&gt;&lt;p&gt;In 1976, an accidental discovery revolutionised sweetness engineering. Tate &amp; Lyle scientists, Leslie Hough and Shashikant Phadnis at Queen Elizabeth College, were exploring sucrose uses&lt;sup&gt;(&lt;/sup&gt;&lt;span&gt;&lt;sup&gt;1&lt;/sup&gt;&lt;/span&gt;&lt;sup&gt;)&lt;/sup&gt;. When Phadnis misheard ‘test’ as ‘taste,’ he found a chlorinated sugar compound to be extremely sweet, leading to sucralose (E955), a non-nutritive sweetener 320 to 1,000 times sweeter than sucrose. Stable under heat and pH changes, it became essential in baking and shelf-stable foods, reshaping low-calorie sweeteners.&lt;/p&gt;&lt;p&gt;Interest in probiotics, first proposed by Elie Metchnikoff in 1907, surged after 1980, as studies explored gut health benefits&lt;sup&gt;(&lt;/sup&gt;&lt;span&gt;&lt;sup&gt;2&lt;/sup&gt;&lt;/span&gt;&lt;sup&gt;)&lt;/sup&gt;. Though popular, many health claims are contested, with the European Food Safety Authority (EFSA) rejecting several for lacking scientific evidence, stressing the need for rigorous research. The journey into gut health continued with Marcel Roberfroid who, in 1995 discovered prebiotics: non-digestible fibres promoting beneficial bacteria growth in the colon, often found in everyday foods. These play a key role in gut health&lt;sup&gt;(&lt;/sup&gt;&lt;span&gt;&lt;sup&gt;3&lt;/sup&gt;&lt;/span&gt;&lt;sup&gt;)&lt;/sup&gt;.&lt;/p&gt;&lt;p&gt;As health focus grew, demand for functional foods—offering benefits beyond nutrition—boomed with EFSA imposing strict regulations to ensure health claims are scientifically supported&lt;sup&gt;(&lt;/sup&gt;&lt;span&gt;&lt;sup&gt;4&lt;/sup&gt;&lt;/span&gt;&lt;sup&gt;)&lt;/sup&gt;.&lt;/p&gt;&lt;p&gt;In the 1990s, research revealed the risks of trans fats, linking them to coronary heart disease. This prompted a global push to eliminate trans fats, showing how the industry responds to science and consumer demand for healthier choices&lt;sup&gt;(&lt;/sup&gt;&lt;span&gt;&lt;sup&gt;5&lt;/sup&gt;&lt;/span&gt;&lt;sup&gt;)&lt;/sup&gt;.&lt;/p&gt;&lt;p&gt;","PeriodicalId":12404,"journal":{"name":"Food Science and Technology","volume":"38 4","pages":"18-21"},"PeriodicalIF":0.0,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fsat.3804_4.x","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142860293","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Artificial Intelligence and the food sector: a golden opportunity for growth 人工智能和食品行业:增长的黄金机会
Q2 Agricultural and Biological Sciences Pub Date : 2024-12-05 DOI: 10.1002/fsat.3804_8.x
<p><b><i>Experts from the Advanced Food Innovation Centre at Sheffield Hallam University discuss food sector research and innovation through the lens of AI</i></b>.</p><p>The Advanced Food Innovation Centre (AFIC) is a National Centre of Excellence based on Sheffield Hallam University's Health Innovation Campus. It is dedicated to driving sustainable innovations in the global food system. Four research themes - digital connectivity, food system sustainability, healthier lives, and feeding a growing population - enable problem-led, collaborative solutions for the food sector.</p><p>Through pilot-scale production facilities, laboratories, and workshops, the AFIC serves as a collaborative hub for research and innovation between industry and academia. £15m in research income has enabled advancements in food processing and manufacturing solutions, new processes technology, energy efficient systems and novel techniques to meet the demand for healthy foods.</p><p>Food and drink is the largest UK manufacturing sector – accounting for around 19% of UK manufacturing output and directly contributing £33bn to the UK economy.</p><p>The <b>Sheffield City Region</b> surrounding Hallam, generates as much GVA from food and drink manufacturing as the whole of the North-East and there are 360 food manufacturers registered in the region.</p><p>Running alongside these, there are future sector challenges including: climate change, a growing world-wide population, political instability and the potential of future pandemics<sup>(</sup><span><sup>2</sup></span><sup>)</sup>.</p><p>The recurring theme in the press and the literature is that, given things may well become more challenging, the food and drink industry is going to inevitably have to do more with less - droughts, storage challenges, and import/export complexities will diminish stocks of raw ingredients.</p><p>These problems are compounded by low quality food processing, inefficient manufacturing and rising costs – that is where AI comes in. Applied effectively, AI has the potential to greatly reduce waste and therefore slow the diminishing of resources, while cutting down costs.</p><p>These realities have significantly influenced the decision to apply Alex's expertise and knowledge toward sustainable innovations in the food sector.</p><p>A great example has been the opportunity to work with <b>Koolmill</b> on using AI and image processing for controlling the quality of food product outputs.</p><p>Rice feeds <b>nearly half the world</b>'s population but traditional rice milling is both <b>wasteful</b> and <b>power hungry</b>. The team has developed a digitalised rice mill that is <b>more efficient</b>, <b>less wasteful</b>, and uses AI and automation to ensure <b>high quality output</b>.</p><p>The collaboration has been so successful that it recently secured an Innovate UK AI feasibility study grant – this will use AI to rigorously assess the quality of milled rice, working out the amount of broken rice in order
谢菲尔德哈勒姆大学先进食品创新中心的专家通过人工智能的视角讨论了食品行业的研究和创新。先进食品创新中心(AFIC)是谢菲尔德哈勒姆大学健康创新校区的国家卓越中心。它致力于推动全球粮食系统的可持续创新。四个研究主题-数字连接、粮食系统可持续性、更健康的生活和养活不断增长的人口-为粮食部门提供了以问题为导向的协作解决方案。通过中试规模的生产设施、实验室和车间,AFIC成为工业界和学术界之间研究和创新的合作中心。1500万英镑的研究收入使食品加工和制造解决方案,新工艺技术,节能系统和新技术的进步,以满足健康食品的需求。食品和饮料是英国最大的制造业部门,约占英国制造业产出的19%,直接为英国经济贡献了330亿英镑。围绕哈勒姆的谢菲尔德城市地区从食品和饮料制造业中产生的GVA与整个东北部一样多,该地区有360家食品制造商注册。除此之外,未来的行业挑战还包括:气候变化、全球人口增长、政治不稳定以及未来可能发生的流行病(2)。媒体和文献中反复出现的主题是,鉴于事情可能变得更具挑战性,食品和饮料行业将不可避免地不得不以更少的资源做更多的事情——干旱、储存挑战和进出口复杂性将减少原材料的库存。这些问题再加上食品加工质量低下、制造效率低下和成本上升——这就是人工智能的用力所在。如果应用得当,人工智能有可能大大减少浪费,从而减缓资源的消耗,同时降低成本。这些现实极大地影响了将Alex的专业知识和知识应用于食品行业可持续创新的决定。一个很好的例子是与Koolmill合作,利用人工智能和图像处理来控制食品输出的质量。大米养活了世界上近一半的人口,但传统的碾米既浪费又耗电。该团队开发了一种更高效、更少浪费的数字化碾米机,并使用人工智能和自动化来确保高质量的产出。该合作非常成功,最近获得了Innovate UK人工智能可行性研究资助,该研究将使用人工智能严格评估精米的质量,计算出碎米的数量,以改变碾磨的方式。人工智能可以通知诸如皮带速度和最佳腔室尺寸等变量,以找到确保最小破损的最佳位置-它可以实时调整铣削参数。8000年的碾米工作一直是开环的——让它运行并重复——这项技术将提供闭环控制,以提高产出质量并最大限度地减少浪费。早期试验表明,它将使机器减少80%的破损。此外,AFIC还开发了基于人工智能的大米分类和欺诈检测方法,以及基于人工智能的替代模型或碾磨室的“数字孪生”。不过,对该行业真正有利的是谢菲尔德哈勒姆(Sheffield Hallam)等院校的新兴人才。Alex强调,虽然动手编码的时间可能会少一些,但他现在有机会指导不同学科的下一代研究人员。早期职业研究员Jess Limb向我们讲述了她迄今为止的职业生涯,以及她与传统面包师Rakusen的创新英国“可持续智能工厂”项目的参与:面包师行业的智能和可持续制造。杰斯在诺丁汉大学学习食品科学与营养学,并在百事公司工作了一年。在加入IUK项目团队之前,她以KTP助理的身份加入了“SHU Food”团队,在南约克郡的一家面包店探索低糖、脂肪和盐的烘焙配方。来自AFIC和布拉德福德大学的学者正在与Rakusen合作,改变生产方法,以支持企业优化饼干的烘焙过程,旨在减少排放,减少材料浪费,并将能耗降低60%以上。该项目还支持这家在英国生产火焰烘烤水饼干和饼干的百年企业,以满足国际市场的增长需求,并帮助其实现净零目标,同时保持其独特的传统。 其目的是通过数字技术和食品科学改造Rakusen's,以最大限度地减少公司的碳足迹并最大限度地提高产能——所有这些都不需要改变现有的机器。Jess在项目进行到一半的时候加入了这个项目,作为一名过程工程研究员——她希望在项目的早期试验中实现所学到的知识,并将这些知识转移到业务中。目前,杰西正在领导新烤箱的试验,并将成品与现有生产线进行比较。该团队还在探索不同的混合方法,这些方法可以提供与当前方法相同的粘弹性特性,但旨在减少混合物的含水量——如果团队烘烤的水分较少,则可以改善能耗。这些标准化的食谱为人工智能创建了基准标记,然后人工智能可以给出实时反馈,并相应地调整热量和烘焙设置。这是Jess提供食品科学支持以交付项目的绝佳机会,同时还安装了数字化转型平台。使用人工智能交付高质量产品的概念令人着迷。该软件使用以前的图像从线内适应烘焙过程。人工智能的能力和数字化转型对食品业务整合的影响令人大开眼界——建模、预测和在线适应的速度远远快于任何人类,而且它将员工解放出来,让他们从事生产的其他方面。Jess也非常感谢与项目合作伙伴和IUK的资金顾问的合作,他们提供支持和见解,以保持项目的轨道,并帮助实现其目标。该企业目前使用的是传统设备,这提供了有限的制造控制,并限制了新产品线的引入。业务的未来需要它解决这些挑战,并投资于创新,这与它基于传统的产品相一致。该项目还将对劳动力产生积极影响,通过培训和引入文化变革来提高员工的技能,并对区域产生影响,因为大多数原料都是在当地供应的。作为合作竞标的一部分,Rakusen为其他资金提供了机会,他们目前正在确定他们可能合作的其他领域。还有其他业务改进的领域,如废物估价。团队成员反馈说,他们已经看到了新技术可以带来的好处,比如帮助他们保持竞争力,同时保留他们的身份、传统和传统价值观。Jess指出,人工智能在该行业的应用仍然缓慢,部分原因是与技能、招聘、效率和优化运营相关的共同挑战。然而,人工智能的改进为减少浪费的产品、实现可持续发展目标、缓解技能短缺和提高能源成本效益提供了潜力。关于采用的挑战,Jess强调,传统设备已经使用多年,在安装和适应不同生产条件的能力方面存在挑战。这些变化似乎势如势利,令人恐惧——无论技术多么严格,对企业来说,这仍然是向“未知”的飞跃,人们对改变的成本和时间投入感到担忧,这是可以理解的。人工智能解决方案的美妙之处在于,一旦完全整合,它就可以执行重复和平凡的任务,就像《终结者》一样,它不会停止。一旦配方制定和参数设置,它将不断更新-没有疲劳或浓度损失的风险。这可以让员工腾出时间从事新产品开发,利用他们的创造力进行微调。它提供了离开生产线的时间,为人工智能开发输入,以规范质量和一致的产品——它释放了急需的能力。张宏伟博士,AFIC联席主任(学术),是一名拥有超过20年学术和工业经验的特许工程师,拥有控制工程和航空航天工程双博士学位。鸿威的使命是推动食品工程和过程控制的知识和实践,同时促进学术界和工业界之间的合作和创新。张博士坚信人工智能在食品行业的变革潜力,目前正在参与几个利用人工智能驱动的数字化转型的开创性项目。他强调了对食品行业的巨大好处,解决了效率、可持续性和成本效益等关键问题。尽管有这些优势,但食品行业对人工智能的采用落后于其他制造业,不仅在英国,在全球范围内也是如此。这种缓慢的吸收在一定程度上是由于对人工智能的误解,以及从食品企业的角度来看,不确定从哪里开始。 他在2024年美国食品工程会议上主持了一个研讨会,强调人工智能的潜力,促使人们反思如何表达这些机会。与业界专家就“食品工业的资讯科技”进行的全体会议小组讨论,进一步加强了知识交流和合作分享意见的重要性。在所有类型的系统中,人工智能是实现自动化、学习和自主操作的核心技术,通常是在复杂和动态的环境中。它们带来了巨大的利益领域-提高效
{"title":"Artificial Intelligence and the food sector: a golden opportunity for growth","authors":"","doi":"10.1002/fsat.3804_8.x","DOIUrl":"https://doi.org/10.1002/fsat.3804_8.x","url":null,"abstract":"&lt;p&gt;&lt;b&gt;&lt;i&gt;Experts from the Advanced Food Innovation Centre at Sheffield Hallam University discuss food sector research and innovation through the lens of AI&lt;/i&gt;&lt;/b&gt;.&lt;/p&gt;&lt;p&gt;The Advanced Food Innovation Centre (AFIC) is a National Centre of Excellence based on Sheffield Hallam University's Health Innovation Campus. It is dedicated to driving sustainable innovations in the global food system. Four research themes - digital connectivity, food system sustainability, healthier lives, and feeding a growing population - enable problem-led, collaborative solutions for the food sector.&lt;/p&gt;&lt;p&gt;Through pilot-scale production facilities, laboratories, and workshops, the AFIC serves as a collaborative hub for research and innovation between industry and academia. £15m in research income has enabled advancements in food processing and manufacturing solutions, new processes technology, energy efficient systems and novel techniques to meet the demand for healthy foods.&lt;/p&gt;&lt;p&gt;Food and drink is the largest UK manufacturing sector – accounting for around 19% of UK manufacturing output and directly contributing £33bn to the UK economy.&lt;/p&gt;&lt;p&gt;The &lt;b&gt;Sheffield City Region&lt;/b&gt; surrounding Hallam, generates as much GVA from food and drink manufacturing as the whole of the North-East and there are 360 food manufacturers registered in the region.&lt;/p&gt;&lt;p&gt;Running alongside these, there are future sector challenges including: climate change, a growing world-wide population, political instability and the potential of future pandemics&lt;sup&gt;(&lt;/sup&gt;&lt;span&gt;&lt;sup&gt;2&lt;/sup&gt;&lt;/span&gt;&lt;sup&gt;)&lt;/sup&gt;.&lt;/p&gt;&lt;p&gt;The recurring theme in the press and the literature is that, given things may well become more challenging, the food and drink industry is going to inevitably have to do more with less - droughts, storage challenges, and import/export complexities will diminish stocks of raw ingredients.&lt;/p&gt;&lt;p&gt;These problems are compounded by low quality food processing, inefficient manufacturing and rising costs – that is where AI comes in. Applied effectively, AI has the potential to greatly reduce waste and therefore slow the diminishing of resources, while cutting down costs.&lt;/p&gt;&lt;p&gt;These realities have significantly influenced the decision to apply Alex's expertise and knowledge toward sustainable innovations in the food sector.&lt;/p&gt;&lt;p&gt;A great example has been the opportunity to work with &lt;b&gt;Koolmill&lt;/b&gt; on using AI and image processing for controlling the quality of food product outputs.&lt;/p&gt;&lt;p&gt;Rice feeds &lt;b&gt;nearly half the world&lt;/b&gt;'s population but traditional rice milling is both &lt;b&gt;wasteful&lt;/b&gt; and &lt;b&gt;power hungry&lt;/b&gt;. The team has developed a digitalised rice mill that is &lt;b&gt;more efficient&lt;/b&gt;, &lt;b&gt;less wasteful&lt;/b&gt;, and uses AI and automation to ensure &lt;b&gt;high quality output&lt;/b&gt;.&lt;/p&gt;&lt;p&gt;The collaboration has been so successful that it recently secured an Innovate UK AI feasibility study grant – this will use AI to rigorously assess the quality of milled rice, working out the amount of broken rice in order","PeriodicalId":12404,"journal":{"name":"Food Science and Technology","volume":"38 4","pages":"32-35"},"PeriodicalIF":0.0,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fsat.3804_8.x","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142860262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Editorial and News 社论和新闻
Q2 Agricultural and Biological Sciences Pub Date : 2024-12-05 DOI: 10.1002/fsat.3804_2.x
Veronica Giacintucci
<p>Welcome to the Final Issue of 2024! As the year draws to a close, this issue of <i>Food Science and Technology</i> focuses on Food Quality from various perspectives, including analyses. It explores how ingredient interactions influence texture, the impact of processes and packaging on maintaining quality, and the critical importance of managing allergens.</p><p>The issue begins with a retrospective on the evolution of innovations over the past 60 years, marking the conclusion of IFST's Diamond Jubilee celebrations. Developments in food analysis, sustainability, and consumer safety have transformed the industry. Let's take food microstructure, for example, this is a key aspect related to quality. It helps understanding texture changes upon processing, and potential sensory appeal of the finished product. In products like bread, the distribution of gas bubbles during mixing, proofing, and baking defines texture and volume too. Advanced techniques, like dough inflation, offer precise control, ensuring consistent, high-quality products.</p><p>Food quality is closely tied to bioactive retention. Smart processing techniques like fermentation and encapsulation preserve nutrients, enhancing bioavailability and health benefits.</p><p>Artificial intelligence (AI) - once again - takes centre stage in this edition, with a look at its transformative role in food science. From optimising recipes to designing new products through advanced methodologies, AI is revolutionising the field. Its applications in research and product development continue to grow, making it an essential area to revisit in 2025.</p><p>Sustainable packaging is also a key focus, with life cycle assessments exploring how to balance environmental concerns with the need to preserve food quality.</p><p>To bring a festive touch to this edition, I have included a special crossword puzzle as a lighthearted end-of-year challenge. I encourage sharing your thoughts with me—I always value hearing from you.</p><p>I hope this issue proves both insightful and inspiring as we look ahead to the opportunities and challenges of the coming year.</p><p>Enjoy the read!</p><p>Researchers at INRAE (French National Research Institute for Agriculture, Food, and Environment) have developed a pioneering 3D biomimetic artificial mouth that mimics human chewing and saliva production. This cutting-edge tool is designed to enhance our understanding of how food breaks down and forms a bolus, all processes critical to digestion and nutrient absorption. The artificial mouth replicates the physical and biochemical environment of the human oral cavity, allowing scientists to observe how different foods respond to chewing forces, saliva, and oral enzymes. This provides a controlled setting to study the early stages of digestion, crucial for nutrient access and absorption further along the digestive tract. The technology offers promising applications in food science. Researchers can investigate how various food textures, st
欢迎来到2024年的最后一期!本年度即将结束,本期《食品科学与技术》从多个角度关注食品质量,包括分析。它探讨了成分相互作用如何影响质地,过程和包装对保持质量的影响,以及管理过敏原的关键重要性。这期杂志首先回顾了过去60年的创新演变,标志着IFST钻石周年庆祝活动的结束。食品分析、可持续性和消费者安全方面的发展已经改变了这个行业。让我们以食品的微观结构为例,这是关系到质量的一个关键方面。它有助于理解加工过程中的质地变化,以及成品的潜在感官吸引力。在像面包这样的产品中,在混合、打样和烘烤过程中气泡的分布也决定了其质地和体积。先进的技术,如面团膨胀,提供精确的控制,确保一致,高品质的产品。食品质量与生物活性保留密切相关。智能加工技术,如发酵和封装保存营养物质,提高生物利用度和健康效益。人工智能(AI)再次成为本期的中心议题,探讨其在食品科学中的变革性作用。从优化配方到通过先进的方法设计新产品,人工智能正在彻底改变这个领域。它在研究和产品开发中的应用继续增长,使其成为2025年重新审视的重要领域。可持续包装也是一个关键的焦点,与生命周期评估探索如何平衡环境问题与需要保持食品质量。为了给这个版本带来节日气氛,我在年终挑战中加入了一个特别的填字游戏。我鼓励你和我分享你的想法——我总是很重视听到你的声音。我希望在我们展望未来一年的机遇和挑战时,这篇文章既能给我们带来深刻的启迪,也能给我们带来启迪。享受阅读!法国国家农业、食品和环境研究所(INRAE)的研究人员开发了一种开创性的3D仿生人工口腔,可以模仿人类咀嚼和唾液的产生。这个尖端的工具旨在增强我们对食物如何分解和形成丸剂的理解,这些过程对消化和营养吸收至关重要。人造口腔复制了人类口腔的物理和生化环境,使科学家能够观察不同食物对咀嚼力、唾液和口腔酶的反应。这为研究消化的早期阶段提供了一个可控的环境,这对营养物质的获取和吸收至关重要。这项技术在食品科学中有很好的应用前景。研究人员可以研究各种食物的质地、结构和成分在咀嚼过程中是如何相互作用的,从而为改善食物的质地、味道和健康益处提供见解。这些知识对于开发适合特定饮食需求的食物特别有用,例如针对有消化问题或饮食限制的个人。总的来说,这一创新代表了食品科学和健康研究的重要一步,弥合了实验室研究结果和现实生活饮食经验之间的差距。它支持创造更健康、更愉快和营养优化的食品,对消费者和食品行业都有潜在的好处。据CNBC报道,Beyond Meat将推出一种以菌丝体为基础的牛排替代品,以满足消费者对清洁标签产品日益增长的需求。首席执行官伊森·布朗证实了新牛排产品的推出,但他明确表示,这款产品将在一家以健康为重点的连锁餐厅推出,而不是在麦当劳、唐恩都乐或肯德基等快餐巨头推出。不过,他没有透露具体的释放日期。布朗强调,该产品强调最低成分表、高蛋白和低饱和脂肪。通过发酵从菌丝体中提取的真菌蛋白在肉类替代品领域越来越受欢迎,因为它具有类似肉类的质地、温和的味道和营养价值,包括必需氨基酸、纤维和铁、锌和钾等矿物质。该领域的主要参与者包括奥地利的Revo Foods,提供鲑鱼和章鱼替代品,英国的Quorn,以各种无肉产品而闻名,以及Adamo Foods,提供现实的牛排替代品。在美国,Meati生产基于真菌蛋白的肉片,而MyForest Foods则提供培根替代品。Beyond Meat在2024年做出了重大努力,以提高产品透明度,并解决人们对植物性食品过度加工的担忧。 他们新的Beyond IV平台改进了Beyond汉堡和Beyond牛肉等产品的配方,加入了更健康的油,减少了饱和脂肪和钠,增加了蛋白质。美国心脏协会已经对这些改进进行了认证,这些改进得到了积极的反馈,并推动Beyond Meat在2024年第二季度取得了更好的财务业绩。英国政府宣布,从2026年底开始,非全麦面粉将添加叶酸,以预防新生儿神经管缺陷。该倡议旨在将脊柱裂等疾病减少约20%,每年预防约200例病例。目前,面粉中添加了钙、烟酸、硫胺素和铁;补充叶酸将进一步促进公众健康。虽然英国国家医疗服务体系继续建议孕妇在怀孕前和怀孕早期服用叶酸补充剂,但这一措施将为所有女性提供更高的基线摄入量,包括那些意外怀孕的女性。该政策预计将为NHS节省2000万英镑,并在未来十年促进经济增长9000多万英镑。诺丁汉大学的研究人员正在推动接骨木花生产的进步,支持该行业满足日益增长的消费者需求。接骨木花是饮料和烹饪产品中的一种受欢迎的成分,由于其独特的风味和潜在的健康益处,其需求有所增加。然而,种植者面临着挑战,包括不可预测的作物产量和关于最佳种植实践的有限研究。诺丁汉大学的研究团队正直接与接骨木花生产商合作,解决这些问题,为最佳生长条件、害虫管理和收获技术提供科学见解。这项合作旨在提高接骨木花作物的可靠性和可持续性,帮助农民实现更高的产量和更好的收成。诺丁汉大学希望通过采用创新的农业方法和数据驱动的解决方案来支持接骨木花产业,并促进可持续的农业实践。这项研究可能会带来一个更强大的接骨木花供应链,使生产者和消费者都受益。该项目强调了该大学致力于利用研究来支持当地工业,提高食品可持续性,并应对不断变化的市场需求。由慕尼黑工业大学莱布尼茨食品系统生物学研究所的Andreas Dunkel领导的一组研究人员正在使用先进的技术来改变奶酪的生产方式。他们正在开发一个详细的数据库来预测风味和优化成熟时间,旨在使奶酪制作过程更快、更高效,同时保持或增强消费者期望的丰富风味。这项研究的重点是影响奶酪味道的复杂因素,包括微生物活动、发酵和环境条件。通过收集和分析大量数据,该团队正在创建由人工智能(AI)和机器学习驱动的预测工具。这些工具可以识别出特定风味和质地的关键元素,使生产商能够精确地改进他们的工艺。该项目的一个重大突破是有可能大幅缩短成熟时间,从几个月甚至几年缩短到一小部分时间,而不影响质量。这一进步不仅加快了生产速度,而且降低了成本,减少了对环境的影响,使奶酪生产更具可持续性。此外,该数据库还为根据消费者偏好制作新的创新奶酪口味提供了可能性,推动了市场的多样化和个性化。这项开创性的研究是食品工业的一个里程碑,将传统的奶酪制作与尖端科学相结合。在邓克尔的领导下,该计划强调了技术如何增强我们对食品的理解,提供满足不断变化的消费者需求的高质量产品,同时解决生产中的可持续性和效率挑战。阅读报纸:https://www.sciencedirect.com/science/article/pii/S0308814624027808?via%3DihubAustrian公司Revo Foods推出了世界上最大的3d打印食品工厂,推出了一种由菌丝体制成的增强植物性鲑鱼片。该工厂被称为味觉工厂,使用Revo独特的3D结构技术,每月可以生产60吨产品。这种方法结合了脂肪和蛋白质,重现了真鱼的分层质地,提供了真正的烹饪体验。该公司的旗舰产品是一种基于菌丝体的三文鱼类似物,具有高蛋白含量、来自微藻的omega-3和必需维生素。Revo Foods的目标是进一步扩张,与对肉类替代品感兴趣的公司合作,探索新的基于菌丝体的产品,提供独特的鲜味。€7。 筹集了500万美元,Revo计划进一步创新,包括潜在的蘑菇蛋白鱼片。这
{"title":"Editorial and News","authors":"Veronica Giacintucci","doi":"10.1002/fsat.3804_2.x","DOIUrl":"https://doi.org/10.1002/fsat.3804_2.x","url":null,"abstract":"&lt;p&gt;Welcome to the Final Issue of 2024! As the year draws to a close, this issue of &lt;i&gt;Food Science and Technology&lt;/i&gt; focuses on Food Quality from various perspectives, including analyses. It explores how ingredient interactions influence texture, the impact of processes and packaging on maintaining quality, and the critical importance of managing allergens.&lt;/p&gt;&lt;p&gt;The issue begins with a retrospective on the evolution of innovations over the past 60 years, marking the conclusion of IFST's Diamond Jubilee celebrations. Developments in food analysis, sustainability, and consumer safety have transformed the industry. Let's take food microstructure, for example, this is a key aspect related to quality. It helps understanding texture changes upon processing, and potential sensory appeal of the finished product. In products like bread, the distribution of gas bubbles during mixing, proofing, and baking defines texture and volume too. Advanced techniques, like dough inflation, offer precise control, ensuring consistent, high-quality products.&lt;/p&gt;&lt;p&gt;Food quality is closely tied to bioactive retention. Smart processing techniques like fermentation and encapsulation preserve nutrients, enhancing bioavailability and health benefits.&lt;/p&gt;&lt;p&gt;Artificial intelligence (AI) - once again - takes centre stage in this edition, with a look at its transformative role in food science. From optimising recipes to designing new products through advanced methodologies, AI is revolutionising the field. Its applications in research and product development continue to grow, making it an essential area to revisit in 2025.&lt;/p&gt;&lt;p&gt;Sustainable packaging is also a key focus, with life cycle assessments exploring how to balance environmental concerns with the need to preserve food quality.&lt;/p&gt;&lt;p&gt;To bring a festive touch to this edition, I have included a special crossword puzzle as a lighthearted end-of-year challenge. I encourage sharing your thoughts with me—I always value hearing from you.&lt;/p&gt;&lt;p&gt;I hope this issue proves both insightful and inspiring as we look ahead to the opportunities and challenges of the coming year.&lt;/p&gt;&lt;p&gt;Enjoy the read!&lt;/p&gt;&lt;p&gt;Researchers at INRAE (French National Research Institute for Agriculture, Food, and Environment) have developed a pioneering 3D biomimetic artificial mouth that mimics human chewing and saliva production. This cutting-edge tool is designed to enhance our understanding of how food breaks down and forms a bolus, all processes critical to digestion and nutrient absorption. The artificial mouth replicates the physical and biochemical environment of the human oral cavity, allowing scientists to observe how different foods respond to chewing forces, saliva, and oral enzymes. This provides a controlled setting to study the early stages of digestion, crucial for nutrient access and absorption further along the digestive tract. The technology offers promising applications in food science. Researchers can investigate how various food textures, st","PeriodicalId":12404,"journal":{"name":"Food Science and Technology","volume":"38 4","pages":"4-7"},"PeriodicalIF":0.0,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fsat.3804_2.x","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142851391","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Game: Tackling Future Food Challenges 游戏:应对未来的粮食挑战
Q2 Agricultural and Biological Sciences Pub Date : 2024-12-05 DOI: 10.1002/fsat.3804_14.x
<p>Last week, as I was on the 13:02 train from Marylebone, I saw field after sodden field, many still submerged from recent flooding. Add in the scorching summer heat across much of continental Europe. Many yields will be low. Again. Earlier in the day, I’d been the last speaker on the 10-strong panel at the Lord Mayor's World Food Day Colloquy<sup>(1)</sup>. Sitting opposite me was a young hospital medic—bright, articulate, and highly educated. Yet he hadn’t considered the impact of constant rain on crops, nor the effects of the heat-wave across Europe on our food supplies. He was also unaware of the vast quantities of food needed to sustain a population. Not untypical, I guess. Remarkably, even some of the Players of <i>The Game</i> are surprised by the quantities of food a population needs. Yet it's easy to compute, back-of-the-envelope stuff<sup>(2)</sup>.</p><p>I’ve yet to meet a food sector professional, though, who doesn’t grasp the scale or complexity of the organisational operations involved. They’re all concerned about sourcing and walk the talk about ‘sustainable supply chains’. In truth, though, such a thing doesn’t exist for long. It's a constantly shifting landscape when it comes to securing produce.</p><p>Are we <i>too late for the party</i>, as baldly stated by a logistics manager who recently played <i>The Game</i>? Maybe.</p><p>To up our chances, as I repeatedly said in my Mansion House talk, we can choose to be prepared for the exigencies ahead. This is the reason behind the creation of <i>The Game</i> in the first place. Our 2017-18 horizon scanning project highlighted that the already intense global competition for food could only increase<sup>(3, 4)</sup>. Project contributors, though only in private discussions, suggested that in the best-case scenario, millions would die; at worst, humanity could face an existential crisis. Possibly soon. Their consensus, like that of many others at the time, was we mustn’t talk openly about such scenarios because, they argued, if people knew what was coming, they would be paralysed, unable to act. <i>The Game</i> is predicated on a radically opposite stance. <i>Facing a future of accelerating climate change while blind to worst case scenarios is naive risk management at best, and fatally foolish at worst</i><sup><i>(5)</i></sup>. This is serious, heavy stuff. As Players quickly learn, we do serious. But not solemn! <i>The Game</i> is huge fun to play. Players are responsible for maximising the chances of ‘their’ population to have access to sufficient supplies of safe, nutritious food in the face of ‘events’ we deal to each team. Here they are story-makers, emotionally immersed and engaged in fictional decision-making. This allows freedom to discuss what to do, and eagerness to learn from other perspectives around the table; <i>so much diversity, so much in common</i> as a recent Player wrote on his review sheet.</p><p>We felt a deep-rooted responsibility when preparing to run <i>The Game
我们可以选择控制它们的品牌和包装,并使它们受制于特定的财政制度(7)。肯·斯隆(Ken Sloan)教授将我们的团队描述为该领域的思想领袖,对进步充满激情,这种激情具有真正的感染力。怎么做,为什么?这是因为玩家的多样性,包括IFST董事会成员Tom Hollands,他将游戏视为领导者的绝佳教育工具,Partners&amp的销售总监Jon Miller;对保险公司来说,这是一项非常有价值的工作,可以评估我们食品系统中的风险和潜在解决方案,以及它们对更广泛的社会意味着什么。康沃尔郡议会的战略家索菲·霍斯金(Sophie Hosking)写道,我一听说这个游戏,就知道我必须去那里——它没有让我失望,农业食品研究员萨姆·贝利(Sam Baillie)博士不仅向我的同行推荐了这个游戏,还向所有参与食品系统的人推荐了它。辉煌!我们将继续提供游戏,并每次更新,因为我们的食物供应面临的威胁越来越频繁和严重。要么是为特定客户定制,要么是像我们本月第一次做的那样,作为一个公开活动,下一次可能是在春天。2020年3月,当英国一半的食物供应连续几个月被锁在夜里时,我们已经进行了三次比赛。一些球员给我打电话,感谢他们预见到了可能发生的事情。那时候我觉得《The Game》已经完蛋了。我们在里面!我报名参加了在线研讨会,我们采访了几位玩家,也采访了好几次。他们喜欢记录那些令人不安的最初几周的事件,往往会忘记几天前的经历。和我们谈话帮助他们弄清楚发生了什么事,下一步该做什么。一位农民碰巧也是一位学术供应链专家,他几乎是顺便提到,英国“当然”没有任何缓冲应急库存。这句即兴的评论激发了我们创造《The Game》的新设计。我认为这是一个反雪貂情景练习。它由三个小型虚拟工作室和三个玩家“团队”组成。每个小组都被安排在这样的场景中:现在是本世纪20年代末,为了响应新政府的备灾计划,你们的任务是建立一个缓冲应急储备系统。在第二次大流行期间,它已被证明是强有力的。这次会议是为了回顾你建立的系统,哪些运作良好,哪些没有。值得注意的是,这个过程产生了(看起来是)一个可行的模型。这告诉我们,在现实世界中,应急库存肯定有许多可能的模型。伯明翰食品委员会现在有了Game II的原型流程。我用一个发生在20世纪70年代中期的故事来结束这篇文章。那时候,我是一名年轻的教师,每周五下午都有一个墓地时段。9年级入籍。本周,我们在报纸上看到了一篇关于马哈拉施特拉邦严重饥荒的报道。干旱。再一次。照片上,大腹便便的婴儿眼睛呆呆地盯着镜头,苍蝇在周围爬来爬去。像往常一样断断续续的聊天开始了,我注意到其中一个青少年突然心烦意乱,无助地试图掩盖自己情绪激动的状态。我赶紧把她带出教室,并派了一个同事去照看其他孩子。温柔地问她发生了什么事,她的眼睛盯着我,没有看到我。起初慢慢地,眼泪又流下来了。我也是他们中的一员,小姐。我仍然无法想象她婴儿时期的绝望,她悲惨的生活。没有人知道1966-67年比哈尔邦饥荒中有多少人死亡。肯定有数百万。干旱。再一次。这个孩子,扭着我给她的手帕,现在住在一个通风的维多利亚式房子里,背对背,外面有厕所,是幸存者之一。我不记得为什么我最近把这个几乎被遗忘的故事告诉了伯明翰食品委员会的主席。她的回答让我很惊讶:哦,所以这就是你做你所做的事情的原因。
{"title":"The Game: Tackling Future Food Challenges","authors":"","doi":"10.1002/fsat.3804_14.x","DOIUrl":"https://doi.org/10.1002/fsat.3804_14.x","url":null,"abstract":"&lt;p&gt;Last week, as I was on the 13:02 train from Marylebone, I saw field after sodden field, many still submerged from recent flooding. Add in the scorching summer heat across much of continental Europe. Many yields will be low. Again. Earlier in the day, I’d been the last speaker on the 10-strong panel at the Lord Mayor's World Food Day Colloquy&lt;sup&gt;(1)&lt;/sup&gt;. Sitting opposite me was a young hospital medic—bright, articulate, and highly educated. Yet he hadn’t considered the impact of constant rain on crops, nor the effects of the heat-wave across Europe on our food supplies. He was also unaware of the vast quantities of food needed to sustain a population. Not untypical, I guess. Remarkably, even some of the Players of &lt;i&gt;The Game&lt;/i&gt; are surprised by the quantities of food a population needs. Yet it's easy to compute, back-of-the-envelope stuff&lt;sup&gt;(2)&lt;/sup&gt;.&lt;/p&gt;&lt;p&gt;I’ve yet to meet a food sector professional, though, who doesn’t grasp the scale or complexity of the organisational operations involved. They’re all concerned about sourcing and walk the talk about ‘sustainable supply chains’. In truth, though, such a thing doesn’t exist for long. It's a constantly shifting landscape when it comes to securing produce.&lt;/p&gt;&lt;p&gt;Are we &lt;i&gt;too late for the party&lt;/i&gt;, as baldly stated by a logistics manager who recently played &lt;i&gt;The Game&lt;/i&gt;? Maybe.&lt;/p&gt;&lt;p&gt;To up our chances, as I repeatedly said in my Mansion House talk, we can choose to be prepared for the exigencies ahead. This is the reason behind the creation of &lt;i&gt;The Game&lt;/i&gt; in the first place. Our 2017-18 horizon scanning project highlighted that the already intense global competition for food could only increase&lt;sup&gt;(3, 4)&lt;/sup&gt;. Project contributors, though only in private discussions, suggested that in the best-case scenario, millions would die; at worst, humanity could face an existential crisis. Possibly soon. Their consensus, like that of many others at the time, was we mustn’t talk openly about such scenarios because, they argued, if people knew what was coming, they would be paralysed, unable to act. &lt;i&gt;The Game&lt;/i&gt; is predicated on a radically opposite stance. &lt;i&gt;Facing a future of accelerating climate change while blind to worst case scenarios is naive risk management at best, and fatally foolish at worst&lt;/i&gt;&lt;sup&gt;&lt;i&gt;(5)&lt;/i&gt;&lt;/sup&gt;. This is serious, heavy stuff. As Players quickly learn, we do serious. But not solemn! &lt;i&gt;The Game&lt;/i&gt; is huge fun to play. Players are responsible for maximising the chances of ‘their’ population to have access to sufficient supplies of safe, nutritious food in the face of ‘events’ we deal to each team. Here they are story-makers, emotionally immersed and engaged in fictional decision-making. This allows freedom to discuss what to do, and eagerness to learn from other perspectives around the table; &lt;i&gt;so much diversity, so much in common&lt;/i&gt; as a recent Player wrote on his review sheet.&lt;/p&gt;&lt;p&gt;We felt a deep-rooted responsibility when preparing to run &lt;i&gt;The Game","PeriodicalId":12404,"journal":{"name":"Food Science and Technology","volume":"38 4","pages":"56-57"},"PeriodicalIF":0.0,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fsat.3804_14.x","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142860292","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unlocking Bioavailability: Elevating Food Quality Through Smart Processing 解锁生物利用度:通过智能加工提高食品质量
Q2 Agricultural and Biological Sciences Pub Date : 2024-12-05 DOI: 10.1002/fsat.3804_11.x
<p><b><i>Shalima Sreenath explores how food processing affects bioavailability of bioactive compounds in functional foods, and how it also impacts overall food quality. By focusing on methods like fermentation, encapsulation, and thermal processing, it shows how processing can improve nutrient absorption while maintaining or enhancing the quality, flavour, and texture of food</i></b>.</p><p>In recent years, the concept of food as medicine has emerged as a transformative force in the realm of nutrition, combining ancient wisdom with cutting-edge science to redefine our approach to health. While its roots trace back to early civilizations that recognised the healing potential of food, today's renewed interest is fueled by mounting evidence linking diet to chronic diseases such as diabetes, cardiovascular disease, and obesity. Advances in nutritional science, coupled with the rise of functional foods and personalised nutrition, are driving this movement forward in the 21st century. This evolution signifies a shift towards holistic, preventative healthcare, where the role of food is not just to nourish but to actively promote health and well-being.</p><p>When evaluating the health benefits of functional foods, a key factor to consider is their bioavailability, which refers to the proportion of of bioactive compounds absorded and utilised by the body after consumption. Bioavailability determines how effectively these beneficial compounds are delivered to target tissues to exert their desired health effects.</p><p>When it comes to food-related factors, food processing plays a major, if not the most important role in influencing bioavailability. Processing methods can significantly influence nearly all food-related aspects of bioavailability. This is especially important for functional foods since these are consumed with the greater purpose of tapping the benefits beyond day-to-day nutrition. From the moment raw materials are harvested, through to storage, preparation, and cooking, each stage in the food production journey can either preserve, enhance, or degrade the nutritional value of the final product. For these foods to deliver their promised benefits, it is essential that processing methods are carefully selected and optimised.</p><p>Thermal processing is one of the most common food processing methods used for extending shelf-life, improving safety by eliminating pathogens. It is also chosen for its ability to alter texture, making foods more palatable and easier to digest. Thermal processing includes methods like boiling, steaming, roasting, and pasteurization, and can either enhance or degrade nutrient bioavailability, depending on the nutrient.</p><p>An example of the impact of thermal processing on bioactive compounds is the processing of tomatoes, where the bioavailability of lycopene is positively impacted. Lycopene is a carotenoid and a powerful antioxidant that has been associated with various health benefits, such as reducing the risk of
Shalima Sreenath 探讨了食品加工如何影响功能食品中生物活性化合物的生物利用率,以及如何影响食品的整体质量。近年来,"食物即药物 "的概念已成为营养领域的一股变革力量,它将古老智慧与前沿科学相结合,重新定义了我们的健康之道。这一概念的起源可以追溯到认识到食物治疗潜能的早期文明,而今天,越来越多的证据表明饮食与糖尿病、心血管疾病和肥胖症等慢性疾病有关,从而激发了人们对食物的新兴趣。营养科学的进步,加上功能性食品和个性化营养的兴起,推动着这一运动在 21 世纪向前发展。在评估功能食品对健康的益处时,需要考虑的一个关键因素是其生物利用度,即食用后被人体吸收和利用的生物活性化合物的比例。生物利用度决定了这些有益化合物如何有效地输送到目标组织,以发挥其预期的保健作用。说到与食品有关的因素,食品加工在影响生物利用度方面起着主要作用,甚至是最重要的作用。加工方法可以极大地影响生物利用率的几乎所有食品相关方面。这一点对功能性食品尤为重要,因为食用这些食品的更大目的是为了获取日常营养以外的益处。从原料采摘到储存、制备和烹饪,食品生产过程中的每一个阶段都可能保存、提高或降低最终产品的营养价值。热加工是最常用的食品加工方法之一,可延长保质期,消除病原体,提高安全性。热加工是最常用的食品加工方法之一,可延长保质期,通过消除病原体提高安全性,还能改变质地,使食品更可口、更易消化。热加工包括煮、蒸、烤和巴氏杀菌等方法,可以提高或降低营养素的生物利用率,具体取决于营养素。热加工对生物活性化合物的影响的一个例子是番茄的加工,番茄红素的生物利用率受到积极影响。番茄红素是一种类胡萝卜素,也是一种强大的抗氧化剂,与多种健康益处有关,如降低某些癌症风险和促进心脏健康。番茄通过罐头、烹饪或热处理等方法加工时,热量会导致番茄的细胞结构分解,从而从植物基质中释放出番茄红素,使人体更容易吸收和利用。事实上,与生番茄相比,熟番茄或加工番茄中番茄红素的生物利用率要高得多。虽然一些水溶性维生素(如维生素 C)可能会在加工过程中降解,但对许多人来说,番茄红素生物利用率的整体提高超过了这一影响。发酵是一种生物过程,它利用细菌、酵母或真菌等微生物来分解食物成分,通常能提高营养素的生物利用率。发酵还能促进有益益生菌的产生,从而支持肠道健康。发酵被广泛应用于酸奶、泡菜和酸乳酒等功能食品的生产中,改善营养吸收是其主要优点。发酵对燕麦的影响就是一个典型的例子。发酵可以分解燕麦中天然存在的抗营养素,如植物酸盐,从而大大提高营养素的生物利用率,植物酸盐会抑制铁、钙和锌等必需矿物质的吸收。单宁酸也会被分解,单宁酸会妨碍蛋白质的消化,阻碍矿物质的吸收。在发酵过程中,乳酸菌等有益微生物会释放降解植酸盐的酶,使矿物质更容易被消化道吸收。发酵过程还能提高燕麦的消化率,因为微生物会部分分解纤维,使营养更容易被人体吸收。因此,发酵燕麦不仅提高了营养价值,还有助于改善消化和免疫功能。
{"title":"Unlocking Bioavailability: Elevating Food Quality Through Smart Processing","authors":"","doi":"10.1002/fsat.3804_11.x","DOIUrl":"https://doi.org/10.1002/fsat.3804_11.x","url":null,"abstract":"&lt;p&gt;&lt;b&gt;&lt;i&gt;Shalima Sreenath explores how food processing affects bioavailability of bioactive compounds in functional foods, and how it also impacts overall food quality. By focusing on methods like fermentation, encapsulation, and thermal processing, it shows how processing can improve nutrient absorption while maintaining or enhancing the quality, flavour, and texture of food&lt;/i&gt;&lt;/b&gt;.&lt;/p&gt;&lt;p&gt;In recent years, the concept of food as medicine has emerged as a transformative force in the realm of nutrition, combining ancient wisdom with cutting-edge science to redefine our approach to health. While its roots trace back to early civilizations that recognised the healing potential of food, today's renewed interest is fueled by mounting evidence linking diet to chronic diseases such as diabetes, cardiovascular disease, and obesity. Advances in nutritional science, coupled with the rise of functional foods and personalised nutrition, are driving this movement forward in the 21st century. This evolution signifies a shift towards holistic, preventative healthcare, where the role of food is not just to nourish but to actively promote health and well-being.&lt;/p&gt;&lt;p&gt;When evaluating the health benefits of functional foods, a key factor to consider is their bioavailability, which refers to the proportion of of bioactive compounds absorded and utilised by the body after consumption. Bioavailability determines how effectively these beneficial compounds are delivered to target tissues to exert their desired health effects.&lt;/p&gt;&lt;p&gt;When it comes to food-related factors, food processing plays a major, if not the most important role in influencing bioavailability. Processing methods can significantly influence nearly all food-related aspects of bioavailability. This is especially important for functional foods since these are consumed with the greater purpose of tapping the benefits beyond day-to-day nutrition. From the moment raw materials are harvested, through to storage, preparation, and cooking, each stage in the food production journey can either preserve, enhance, or degrade the nutritional value of the final product. For these foods to deliver their promised benefits, it is essential that processing methods are carefully selected and optimised.&lt;/p&gt;&lt;p&gt;Thermal processing is one of the most common food processing methods used for extending shelf-life, improving safety by eliminating pathogens. It is also chosen for its ability to alter texture, making foods more palatable and easier to digest. Thermal processing includes methods like boiling, steaming, roasting, and pasteurization, and can either enhance or degrade nutrient bioavailability, depending on the nutrient.&lt;/p&gt;&lt;p&gt;An example of the impact of thermal processing on bioactive compounds is the processing of tomatoes, where the bioavailability of lycopene is positively impacted. Lycopene is a carotenoid and a powerful antioxidant that has been associated with various health benefits, such as reducing the risk of ","PeriodicalId":12404,"journal":{"name":"Food Science and Technology","volume":"38 4","pages":"44-47"},"PeriodicalIF":0.0,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fsat.3804_11.x","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142860264","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Beyond the Label: Insights into Allergens for Food Businesses 超越标签:食品企业的过敏原洞察
Q2 Agricultural and Biological Sciences Pub Date : 2024-12-05 DOI: 10.1002/fsat.3804_13.x
<p><b><i>Allergens and sensitivities affect millions worldwide, yet misconceptions about food allergies persist. From historical discoveries to modern challenges in allergen management, Stella Holt explores what food businesses need to understand about allergens to ensure safety, respect, and transparency for every customer</i></b>.</p><p>‘No one had allergies when I was a child!’</p><p>Coming from Greek, the term ‘allergy’ was first coined in 1906, by Austrian Paediatrician, Clemens Peter Pirquet von Cesenatico. ‘Allos’ meaning ‘other’ or ‘altered’, and ‘Ergos’ meaning ‘reaction’, led to the term we know today, but the understanding of it is very different. There are references to the symptoms of hay fever in a book published in Paris 1564. There are also historical records of ancient Romans, Greeks, and Egyptians suffering skin rashes and respiratory problems they had attributed to certain substances, though none of them can be either proven or disproved.</p><p>In 1819, Dr John Bostock at St Thomas's Hospital in London, UK, first linked ‘summer catarrh’ to flowering plants and pollen. From there research took place and we now know that it can be much worse than a ‘summer cold’ to which our parents and grandparents referred, and there are many substances known to cause allergic reactions in those who are sensitised.</p><p>An allergy is an unexpected reaction to a substance by the immune system. If everyone had the same reaction to the same substance, it would be called a poison.</p><p>The initial reaction occurs only after a person has been sensitised to the substance—that is, when the immune system tags the substance as an invader and responds to it upon subsequent exposure. The reactions range from mild symptoms such as sneezing, slight itching, or vomiting, to severe reactions including asthma, hives (swollen, reddened, and itchy patches of skin), difficulty swallowing, swelling of the mouth, throat, and airways, a drop in blood pressure, collapse, and even death.</p><p>An allergen is the substance which causes the allergic reaction and is most often the protein element.</p><p>Around the world there are varying lists of foods that must be declared by food businesses, with 9 in the USA, 14 in the UK and EU, 10 in Australia, and 29 in Japan.</p><p>Bearing in mind that it is the protein that is responsible for causing the reaction, it is important to understand that these often go by different names. For instance, someone following the Six Food</p><p>Elimination Diet under hospital supervision may be given a long list of alternative names to look for in the ingredient lists of bought foods. A few examples include Sodium Caseinate (from milk), Lecithin/E322 (from egg or soya), Lysozyme/E1105 (from egg or soya), and Hydrolysed Whey Protein (from milk). Peanuts may also be known as Groundnuts, Monkey-nuts, Goober pea, or Cacahuete. Some people are unaware that Edamame and Soya are the same thing, or that Tofu is Soya.</p><p>Recently, a customer ask
过敏原和敏感性影响着全世界数百万人,然而关于食物过敏的误解仍然存在。从过敏原管理的历史发现到现代挑战,斯特拉·霍尔特探讨了食品企业需要了解的过敏原,以确保每位客户的安全、尊重和透明度。“我小时候没有人过敏!”1906年,奥地利儿科医生克莱门斯·彼得·皮奎特·冯·塞塞纳蒂科首次创造了“过敏”一词,这个词来自希腊语。“Allos”意为“其他的”或“改变的”,“Ergos”意为“反应”,导致了我们今天所知道的这个词,但对它的理解却大不相同。1564年在巴黎出版的一本书中提到了花粉热的症状。也有关于古罗马人、希腊人和埃及人患皮疹和呼吸系统疾病的历史记录,他们认为这些疾病是由某些物质引起的,尽管没有一种可以证实或反驳。1819年,英国伦敦圣托马斯医院的约翰·博斯托克医生首次将“夏季黏膜炎”与开花植物和花粉联系起来。从那里进行的研究,我们现在知道,它可能比我们的父母和祖父母所说的“夏季感冒”要严重得多,而且已知有许多物质会导致那些敏感的人过敏反应。过敏是免疫系统对某种物质的意外反应。如果每个人对同一种物质都有相同的反应,那就叫毒药。最初的反应只会发生在一个人对该物质过敏之后,也就是说,当免疫系统将该物质标记为入侵者并在随后的接触中对其做出反应时。反应的范围从轻微的症状,如打喷嚏、轻微的瘙痒或呕吐,到严重的反应,包括哮喘、荨麻疹(皮肤肿胀、发红和发痒)、吞咽困难、口腔、喉咙和呼吸道肿胀、血压下降、晕倒,甚至死亡。过敏原是引起过敏反应的物质,通常是蛋白质元素。在世界各地,食品企业必须申报的食品清单各不相同,美国有9项,英国和欧盟有14项,澳大利亚有10项,日本有29项。记住是蛋白质引起了这种反应,重要的是要了解这些蛋白质通常有不同的名称。例如,在医院监督下遵循六种食物划分饮食法的人,可能会得到一长串可供选择的食品名称,以便在购买的食品成分表中查找。一些例子包括酪蛋白酸钠(来自牛奶)、卵磷脂/E322(来自鸡蛋或大豆)、溶菌酶/E1105(来自鸡蛋或大豆)和水解乳清蛋白(来自牛奶)。花生也被称为花生、猴坚果、豆荚或卡卡韦特。有些人不知道毛豆和大豆是一回事,或者豆腐是大豆。最近,一位顾客问饼干里是否有芝麻,得到的回答是:不,里面只有芝麻酱。这样的回答可能会让人哑口无言。令人惊讶的是,由于配料表上的科学名称或化学化合物术语,厨师并不总是知道他们的配料。我们经常听到的一个评论是,“一点点不会受伤”,或者“只是一点点,试一下,它不会杀了你”。联合国粮食及农业组织和世界卫生组织,以及最近的英国食品标准局(FSA)一直在讨论引起过敏原剂量的阈值,这些范围从ED01-ED05(3,4)。粮农组织/世卫组织建立了食品中过敏原的推荐阈值。这些建议的阈值可能被纳入或批准到食品法典标准中,特别是PAL(预防性过敏原标签),俗称“可能含有”标签。然而,这在实践中意味着什么还有待观察。杀死还是治愈?上面的药勺含有1克盐(图1)。1克等于100万微克或1000毫克。所有的药物都是以毫克或微克来衡量的,我们知道其他疗法,比如顺势疗法、巴赫花疗法等等,都是用微量的物质来治疗疾病的。一小粒含有25微克甲状腺药物的药丸(图2),尽管体积很小,但可以维持病人一整天的生命。从这个角度来看,1克盐的重量相当于40000片这种药片中的有效成分。同样,氯沙坦,一种通常用于治疗高血压的药物,通常以50毫克的剂量服用,这意味着一克可以代表200剂量,足以使许多患者受益。对于食物过敏(FHS)的个体,这说明了了解他们特定的触发阈值的重要性。不幸的是,目前还没有办法让FHS个体在任何一天可靠地确定他们的确切阈值或“诱发剂量”(ED)。 过敏反应可以根据诸如与其他食物、环境物质、压力水平、疾病、锻炼等因素的结合以及对最初触发因素的了解而变化。对食物过敏的人来说,生活就像是每时每刻都在穿越雷区。据英国过敏组织称,英国约有200万人被诊断患有食物过敏。还有那些患有乳糜泻、糖尿病等的人,他们都需要小心他们的食物,估计占人口的20%到40%。这是一个非常大的数字,英国过敏协会预测,到2026年,每2个人中就有1个人至少对一种食物过敏。所有的厨师和厨师都很清楚他们菜里的食材。他们知道如何将食品储存在密封的、有标签的容器中,并使用单独的设备来保持基本的食品卫生。所以,坦率地说,为什么过敏原管理仍然是一个巨大的挑战,这令人困惑。虽然我们列出了14种应通报的过敏原,但我们必须承认,任何人都可能对任何东西过敏。拥有一个列表并不意味着它是排他性的。2014年12月,当欧盟第1169/2011号法规生效时,几位知名厨师引发了轰动,他们抗议“不公开他们的食谱”。但餐馆的食客们并不关心食谱,他们只是想知道他们的食物中有什么成分。他们所期望的是诚实、透明和尊重。从最初的接触,无论是通过电话,通过网站,还是通过电子邮件,到餐桌上的一盘食物,至关重要的是,客户可以确信企业知道他们在做什么。接待人员和洗碗工与做饭的厨师或企业主一样重要。每个人都需要知道配料是什么,如何将它们分开,如何与顾客交谈。食物过敏的生活充满压力和恐惧,顾客最不希望看到的就是不受欢迎、讨厌的感觉,或者他们是在“编造”。FHS的客户,真的是把他们的生命交给了你。当食品企业认真承担起为每个人生产安全食品的责任,并确保他们在过敏原管理方面符合法律规定时,为FHS的食客提供餐饮真的应该没有问题。对于所有食品企业,都有关于过敏原和营养信息的法律。由于越来越多的人对食物过敏,人们对“免费”食品的需求越来越大。我们知道食品制造商经常会出问题,这从食品标准局报告的召回数量就可以看出。无论是存在的过敏原,未申报的过敏原,还是包装不当的产品,在2024年1月1日至9月23日期间,已经有43个过敏警报,加上8个更新,涉及英格兰和威尔士的185种产品(2)。这告诉我们有些地方出了问题,食品生产需要更多的支持、培训和监督。真正让人难以接受的是,许多食品企业期望食品与公共服务部的用餐者接受不合格的食品,或者只在菜单上提供一种合适的选择。有很多餐馆提供水果沙拉作为唯一的甜点选择,或者默认提供巧克力布朗尼作为无麸质选择。这种做法感觉像是一种象征性的姿态——缺乏真正的选择和深思熟虑。外出就餐几乎就像你小时候妈妈告诉你的那样:“你有两个选择,要么接受,要么放弃。”如果唯一的“选择”是“离开”,这可能会让企业付出高昂的代价。在今天的社交媒体世界里,声誉的建立或破坏很快——提供一个糟糕的体验,消息传播很快;提供一个积极的答案,在过敏群体中也会引起强烈的共鸣。有人听到一位企业主说,“对于需要无谷蛋白的人来说,这是可以的,但我不会把它提供给其他人,这太可怕了。”“为什么会有人乐意为顾客提供他们认为‘糟糕’的东西呢?”引用我的开场白,“我小时候没有人过敏”。错了!是的,你小时候确实有人过敏。它可能被认为是“夏季感冒”或“皮疹”。当有人死于过敏反应时,通常被认为是“自然原因”。现在我们受到了更好的教育。在测试和治疗方面,已经并将继续进行研究、讨论、发现和发展。
{"title":"Beyond the Label: Insights into Allergens for Food Businesses","authors":"","doi":"10.1002/fsat.3804_13.x","DOIUrl":"https://doi.org/10.1002/fsat.3804_13.x","url":null,"abstract":"&lt;p&gt;&lt;b&gt;&lt;i&gt;Allergens and sensitivities affect millions worldwide, yet misconceptions about food allergies persist. From historical discoveries to modern challenges in allergen management, Stella Holt explores what food businesses need to understand about allergens to ensure safety, respect, and transparency for every customer&lt;/i&gt;&lt;/b&gt;.&lt;/p&gt;&lt;p&gt;‘No one had allergies when I was a child!’&lt;/p&gt;&lt;p&gt;Coming from Greek, the term ‘allergy’ was first coined in 1906, by Austrian Paediatrician, Clemens Peter Pirquet von Cesenatico. ‘Allos’ meaning ‘other’ or ‘altered’, and ‘Ergos’ meaning ‘reaction’, led to the term we know today, but the understanding of it is very different. There are references to the symptoms of hay fever in a book published in Paris 1564. There are also historical records of ancient Romans, Greeks, and Egyptians suffering skin rashes and respiratory problems they had attributed to certain substances, though none of them can be either proven or disproved.&lt;/p&gt;&lt;p&gt;In 1819, Dr John Bostock at St Thomas's Hospital in London, UK, first linked ‘summer catarrh’ to flowering plants and pollen. From there research took place and we now know that it can be much worse than a ‘summer cold’ to which our parents and grandparents referred, and there are many substances known to cause allergic reactions in those who are sensitised.&lt;/p&gt;&lt;p&gt;An allergy is an unexpected reaction to a substance by the immune system. If everyone had the same reaction to the same substance, it would be called a poison.&lt;/p&gt;&lt;p&gt;The initial reaction occurs only after a person has been sensitised to the substance—that is, when the immune system tags the substance as an invader and responds to it upon subsequent exposure. The reactions range from mild symptoms such as sneezing, slight itching, or vomiting, to severe reactions including asthma, hives (swollen, reddened, and itchy patches of skin), difficulty swallowing, swelling of the mouth, throat, and airways, a drop in blood pressure, collapse, and even death.&lt;/p&gt;&lt;p&gt;An allergen is the substance which causes the allergic reaction and is most often the protein element.&lt;/p&gt;&lt;p&gt;Around the world there are varying lists of foods that must be declared by food businesses, with 9 in the USA, 14 in the UK and EU, 10 in Australia, and 29 in Japan.&lt;/p&gt;&lt;p&gt;Bearing in mind that it is the protein that is responsible for causing the reaction, it is important to understand that these often go by different names. For instance, someone following the Six Food&lt;/p&gt;&lt;p&gt;Elimination Diet under hospital supervision may be given a long list of alternative names to look for in the ingredient lists of bought foods. A few examples include Sodium Caseinate (from milk), Lecithin/E322 (from egg or soya), Lysozyme/E1105 (from egg or soya), and Hydrolysed Whey Protein (from milk). Peanuts may also be known as Groundnuts, Monkey-nuts, Goober pea, or Cacahuete. Some people are unaware that Edamame and Soya are the same thing, or that Tofu is Soya.&lt;/p&gt;&lt;p&gt;Recently, a customer ask","PeriodicalId":12404,"journal":{"name":"Food Science and Technology","volume":"38 4","pages":"52-55"},"PeriodicalIF":0.0,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fsat.3804_13.x","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142851425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Minimising Acrylamide in Foods: Key Insights from IFST's New Technical Brief 尽量减少食品中的丙烯酰胺:IFST新技术简报的关键见解
Q2 Agricultural and Biological Sciences Pub Date : 2024-12-05 DOI: 10.1002/fsat.3804_7.x
<p><b><i>IFST have published their latest Technical Brief on Acrylamide. Technical Briefs are short explainers of food science topics aimed primarily at food manufacturing Technical Managers but useful to others with an interest in the subject</i></b>.</p><p>Acrylamide, a chemical compound with the formula C<sub>3</sub>H<sub>5</sub>NO, is extensively used in industrial applications, particularly in the manufacture of polymers and cements. Interestingly, acrylamide also forms naturally in certain foods as a result of cooking or heating processes, especially when foods are cooked at high temperatures. Common sources of acrylamide in the diet include potato-based products such as chips, crisps, and other fried or baked snacks, where heat encourages its formation. Cereal products like bread, toast, biscuits, crackers, and breakfast cereals—especially those that are browned or toasted—also contribute significantly. Additionally, coffee beans develop acrylamide during the roasting process, with levels influenced by factors such as bean variety and roasting duration.</p><p>Through comprehensive analytical techniques, scientists and food safety authorities can monitor and manage acrylamide levels in the food supply chain, ensuring consumer safety and informed dietary choices. Analysis involves sample preparation, extraction, purification and quantification, using sophisticated techniques. Acrylamide formation is not homogenous in a food, so sampling is important, for example most acrylamide in a loaf of bread will be in the crust. Preparation can involve grinding or blending to create a consistent mixture. Extraction can be carried out with solvents (e.g. water, methanol, acetonitrile) or by Solid-Phase Extraction (SPE). Analysis requires high-specification and specialist laboratory testing, usually Liquid Chromatography-Mass Spectrometry (LC-MSMS) and, less commonly, Gas Chromatography-Mass Spectrometry (GC-MS) after derivatisation. Once typical acrylamide levels are modelled for a particular production process, and product design, then indirect indicators can be used for in-process specification control e.g. monitoring of raw materials for formation precursors, such as asparagine.</p><p>By implementing strategies, acrylamide levels can be significantly reduced enhancing food safety and consumer confidence. Strategies are highly specific to the product type, and detailed guidance has been published for some product types. Common themes include:</p><p><b>1. Raw material selection and preparation:</b> To reduce acrylamide formation in food products, it is crucial to select raw materials that naturally contain low levels of asparagine and reducing sugars, as these compounds are key precursors to acrylamide formation during cooking. Furthermore, agricultural practices can be optimised to lower asparagine and sugar concentrations in crops by adjusting fertilisation and harvest timings to minimise the accumulation of these compounds. In certain recipes, subst
IFST 出版了最新一期关于丙烯酰胺的技术简介。丙烯酰胺是一种化学式为 C3H5NO 的化合物,广泛应用于工业领域,尤其是聚合物和水泥的生产。有趣的是,某些食物在烹饪或加热过程中,特别是在高温烹饪时,也会自然形成丙烯酰胺。饮食中丙烯酰胺的常见来源包括薯片、脆片和其他油炸或烘烤小吃等马铃薯制品,因为高温会促进丙烯酰胺的形成。面包、吐司、饼干、薄脆饼干和早餐谷物等谷类食品,特别是经过煎炸或烘烤的食品,也是丙烯酰胺的主要来源。此外,咖啡豆在烘焙过程中也会产生丙烯酰胺,其含量受咖啡豆品种和烘焙时间长短等因素的影响。通过综合分析技术,科学家和食品安全当局可以监测和管理食品供应链中的丙烯酰胺含量,确保消费者的安全和知情的饮食选择。分析工作包括样品制备、萃取、纯化和定量,使用的都是复杂的技术。食物中丙烯酰胺的形成并不均匀,因此取样非常重要,例如一条面包中的大部分丙烯酰胺都在面包皮中。制备过程包括研磨或混合,以形成一致的混合物。萃取可使用溶剂(如水、甲醇、乙腈)或固相萃取法(SPE)。分析需要高规格的专业实验室检测,通常采用液相色谱-质谱联用仪(LC-MSMS),衍生化后采用气相色谱-质谱联用仪(GC-MS)的情况较少。一旦为特定的生产过程和产品设计建立了典型的丙烯酰胺含量模型,就可以使用间接指标来进行过程中的规范控制,例如监测原材料中的天冬酰胺等形成前体。策略与产品种类密切相关,已针对某些产品种类发布了详细的指南。共同的主题包括:1.原材料的选择和制备:要减少食品中丙烯酰胺的形成,关键是要选择天然天门冬酰胺和还原糖含量低的原料,因为这些化合物是烹饪过程中丙烯酰胺形成的关键前体物。此外,还可以优化农业实践,通过调整施肥和收获时间来降低作物中天门冬酰胺和糖的浓度,从而最大限度地减少这些化合物的积累。在某些食谱中,用高天门冬酰胺配料替代也是有益的;例如,用米粉部分替代小麦粉就是一种有效的方法。通过实施这些综合策略,可减少丙烯酰胺形成的可能性,从而提高食品安全:加入抑制丙烯酰胺形成的添加剂,如柠檬酸或钙盐,可以非常有效地降低 pH 值,从而减少丙烯酰胺的含量。此外,限制还原糖的用量,特别是烘焙食品和谷物早餐中的还原糖用量,有助于最大限度地减少丙烯酰胺形成的可能性。使用天冬酰胺酶等酶是另一种有价值的方法;这种酶将天冬酰胺转化为天冬氨酸,不会导致丙烯酰胺的形成。这种方法尤其适用于马铃薯类零食和烘焙谷物食品等产品。这些配方调整措施为降低各种食品中的丙烯酰胺含量提供了切实可行的解决方案:降低烹饪温度和缩短烹饪时间,特别是在油炸、烘烤或烘焙时,是尽量减少丙烯酰胺形成的有效方法,建议的目标是达到金黄色而不是深棕色。在烹饪过程中保持较高的湿度也可抑制丙烯酰胺的形成,因为丙烯酰胺在干燥条件下更容易形成。在可能的情况下,采用预烹调技术(如在油炸前焯土豆)有助于沥出天门冬酰胺和糖分,进一步降低丙烯酰胺形成的可能性。4. 产品设计:考虑采用其他烹饪技术,尽量减少丙烯酰胺的形成,例如真空油炸,其温度比传统油炸低。 5. 包装:保护在家烹饪的产品,防止其在储存过程中水分流失。
{"title":"Minimising Acrylamide in Foods: Key Insights from IFST's New Technical Brief","authors":"","doi":"10.1002/fsat.3804_7.x","DOIUrl":"https://doi.org/10.1002/fsat.3804_7.x","url":null,"abstract":"&lt;p&gt;&lt;b&gt;&lt;i&gt;IFST have published their latest Technical Brief on Acrylamide. Technical Briefs are short explainers of food science topics aimed primarily at food manufacturing Technical Managers but useful to others with an interest in the subject&lt;/i&gt;&lt;/b&gt;.&lt;/p&gt;&lt;p&gt;Acrylamide, a chemical compound with the formula C&lt;sub&gt;3&lt;/sub&gt;H&lt;sub&gt;5&lt;/sub&gt;NO, is extensively used in industrial applications, particularly in the manufacture of polymers and cements. Interestingly, acrylamide also forms naturally in certain foods as a result of cooking or heating processes, especially when foods are cooked at high temperatures. Common sources of acrylamide in the diet include potato-based products such as chips, crisps, and other fried or baked snacks, where heat encourages its formation. Cereal products like bread, toast, biscuits, crackers, and breakfast cereals—especially those that are browned or toasted—also contribute significantly. Additionally, coffee beans develop acrylamide during the roasting process, with levels influenced by factors such as bean variety and roasting duration.&lt;/p&gt;&lt;p&gt;Through comprehensive analytical techniques, scientists and food safety authorities can monitor and manage acrylamide levels in the food supply chain, ensuring consumer safety and informed dietary choices. Analysis involves sample preparation, extraction, purification and quantification, using sophisticated techniques. Acrylamide formation is not homogenous in a food, so sampling is important, for example most acrylamide in a loaf of bread will be in the crust. Preparation can involve grinding or blending to create a consistent mixture. Extraction can be carried out with solvents (e.g. water, methanol, acetonitrile) or by Solid-Phase Extraction (SPE). Analysis requires high-specification and specialist laboratory testing, usually Liquid Chromatography-Mass Spectrometry (LC-MSMS) and, less commonly, Gas Chromatography-Mass Spectrometry (GC-MS) after derivatisation. Once typical acrylamide levels are modelled for a particular production process, and product design, then indirect indicators can be used for in-process specification control e.g. monitoring of raw materials for formation precursors, such as asparagine.&lt;/p&gt;&lt;p&gt;By implementing strategies, acrylamide levels can be significantly reduced enhancing food safety and consumer confidence. Strategies are highly specific to the product type, and detailed guidance has been published for some product types. Common themes include:&lt;/p&gt;&lt;p&gt;&lt;b&gt;1. Raw material selection and preparation:&lt;/b&gt; To reduce acrylamide formation in food products, it is crucial to select raw materials that naturally contain low levels of asparagine and reducing sugars, as these compounds are key precursors to acrylamide formation during cooking. Furthermore, agricultural practices can be optimised to lower asparagine and sugar concentrations in crops by adjusting fertilisation and harvest timings to minimise the accumulation of these compounds. In certain recipes, subst","PeriodicalId":12404,"journal":{"name":"Food Science and Technology","volume":"38 4","pages":"28-31"},"PeriodicalIF":0.0,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fsat.3804_7.x","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142860260","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Food Science and Technology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1