Efficient concentration of trace analyte with ordered hotspot construction for a robust and sensitive SERS platform

IF 16.1 1区 工程技术 Q1 ENGINEERING, MANUFACTURING International Journal of Extreme Manufacturing Pub Date : 2024-03-13 DOI:10.1088/2631-7990/ad339a
Youdi Hu, Yanlei Hu, Zhenyu Wang, Jiale Yong, Wei Xiong, Dong Wu, Shixiang Xu
{"title":"Efficient concentration of trace analyte with ordered hotspot construction for a robust and sensitive SERS platform","authors":"Youdi Hu, Yanlei Hu, Zhenyu Wang, Jiale Yong, Wei Xiong, Dong Wu, Shixiang Xu","doi":"10.1088/2631-7990/ad339a","DOIUrl":null,"url":null,"abstract":"\n Surface enhanced Raman scattering (SERS) enabled trace molecules detection has important application prospects. By structuring/modifying the surface of SERS substrate, molecules in highly-diluted solution can be concentrated into localized active area for highly sensitive detection. However, subject to the difficulty of fabrication process, it remains challenging to balance hot-spots construction and concentration capacity to molecules simultaneously. Therefore, preparing SERS substrate with dense ordered hot-spots and efficient concentration capacity is of great significance for highly sensitive detection. Herein, we propose the Ag and fluoroalkyl modified hierarchical armour substrate (Ag/F-HA), which has a double-layer stacking design to combine analyte concentration with hotspot construction. The micro armour structure fabricated by femtosecond-laser processing to serve as a superhydrophobic and low-adhesive surface to concentrate molecules, while anodic aluminum oxide (AAO) template creates nanopillars array serving as dense and ordered hot spots. Under the synergy action of hot-spots and molecule concentration, Ag/F-HA achieves the detection limit down to 10−7 M of Doxorubicin (DOX) molecules with a relative standard deviation (RSD) of 7.69%. Additionally, Ag/F-HA exhibits the excellent robustness to resist external disturbance such as liquid splash or abrasion. Based on our strategy, the SERS substrates with directional analyte concentration are further explored by patterning microcone array with a defect. This work opens a way to the realistic implementation of SERS in diverse scenarios.","PeriodicalId":52353,"journal":{"name":"International Journal of Extreme Manufacturing","volume":null,"pages":null},"PeriodicalIF":16.1000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Extreme Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/2631-7990/ad339a","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 1

Abstract

Surface enhanced Raman scattering (SERS) enabled trace molecules detection has important application prospects. By structuring/modifying the surface of SERS substrate, molecules in highly-diluted solution can be concentrated into localized active area for highly sensitive detection. However, subject to the difficulty of fabrication process, it remains challenging to balance hot-spots construction and concentration capacity to molecules simultaneously. Therefore, preparing SERS substrate with dense ordered hot-spots and efficient concentration capacity is of great significance for highly sensitive detection. Herein, we propose the Ag and fluoroalkyl modified hierarchical armour substrate (Ag/F-HA), which has a double-layer stacking design to combine analyte concentration with hotspot construction. The micro armour structure fabricated by femtosecond-laser processing to serve as a superhydrophobic and low-adhesive surface to concentrate molecules, while anodic aluminum oxide (AAO) template creates nanopillars array serving as dense and ordered hot spots. Under the synergy action of hot-spots and molecule concentration, Ag/F-HA achieves the detection limit down to 10−7 M of Doxorubicin (DOX) molecules with a relative standard deviation (RSD) of 7.69%. Additionally, Ag/F-HA exhibits the excellent robustness to resist external disturbance such as liquid splash or abrasion. Based on our strategy, the SERS substrates with directional analyte concentration are further explored by patterning microcone array with a defect. This work opens a way to the realistic implementation of SERS in diverse scenarios.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高效浓缩痕量分析物,有序构建热点,打造稳健灵敏的 SERS 平台
利用表面增强拉曼散射(SERS)进行痕量分子检测具有重要的应用前景。通过对 SERS 基底表面进行结构化/修饰,可以将高度稀释溶液中的分子浓缩到局部活性区域,从而实现高灵敏度检测。然而,受制于制造工艺的难度,同时兼顾热点构建和分子浓缩能力仍是一项挑战。因此,制备具有致密有序热点和高效浓缩能力的 SERS 基底对高灵敏度检测具有重要意义。在此,我们提出了银和氟烷基修饰的分层铠装基底(Ag/F-HA),它采用双层堆叠设计,将分析物浓度与热点构建结合在一起。通过飞秒激光加工制造的微铠甲结构可作为超疏水性和低粘性表面来富集分子,而阳极氧化铝(AAO)模板可形成纳米柱阵列,作为致密有序的热点。在热点和分子浓缩的协同作用下,Ag/F-HA 实现了低至 10-7 M 的多柔比星 (DOX) 分子检测限,相对标准偏差 (RSD) 为 7.69%。此外,Ag/F-HA 还具有出色的稳健性,能够抵御液体飞溅或磨损等外部干扰。根据我们的策略,通过对具有缺陷的微锥阵列进行图案化,进一步探索了具有分析物浓度方向性的 SERS 基底。这项工作为 SERS 在不同场景中的实际应用开辟了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Extreme Manufacturing
International Journal of Extreme Manufacturing Engineering-Industrial and Manufacturing Engineering
CiteScore
17.70
自引率
6.10%
发文量
83
审稿时长
12 weeks
期刊介绍: The International Journal of Extreme Manufacturing (IJEM) focuses on publishing original articles and reviews related to the science and technology of manufacturing functional devices and systems with extreme dimensions and/or extreme functionalities. The journal covers a wide range of topics, from fundamental science to cutting-edge technologies that push the boundaries of currently known theories, methods, scales, environments, and performance. Extreme manufacturing encompasses various aspects such as manufacturing with extremely high energy density, ultrahigh precision, extremely small spatial and temporal scales, extremely intensive fields, and giant systems with extreme complexity and several factors. It encompasses multiple disciplines, including machinery, materials, optics, physics, chemistry, mechanics, and mathematics. The journal is interested in theories, processes, metrology, characterization, equipment, conditions, and system integration in extreme manufacturing. Additionally, it covers materials, structures, and devices with extreme functionalities.
期刊最新文献
Design and micromanufacturing technologies of focused piezoelectric ultrasound transducers for biomedical applications Design and additive manufacturing of bionic hybrid structure inspired by cuttlebone to achieve superior mechanical properties and shape memory function Holistic and localized preparation methods for triboelectric sensors: principles, applications and perspectives Recent Advances in Fabricating High-Performance Triboelectric Nanogenerators via Modulating Surface Charge Density Laser-Forged Transformation and Encapsulation of Nanoalloys: Pioneering Robust Wideband Electromagnetic Wave Absorption and Shielding from GHz to THz
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1