High-throughput microfluidic production of carbon capture microcapsules: Fundamentals, applications, and perspectives

IF 16.1 1区 工程技术 Q1 ENGINEERING, MANUFACTURING International Journal of Extreme Manufacturing Pub Date : 2024-03-13 DOI:10.1088/2631-7990/ad339c
Xiangdong Liu, Wei Gao, Yue Lu, Liangyu Wu, Yongping Chen
{"title":"High-throughput microfluidic production of carbon capture microcapsules: Fundamentals, applications, and perspectives","authors":"Xiangdong Liu, Wei Gao, Yue Lu, Liangyu Wu, Yongping Chen","doi":"10.1088/2631-7990/ad339c","DOIUrl":null,"url":null,"abstract":"\n In the last three decades, carbon dioxide (CO2) emissions have shown a significant increase from various sources. To address this pressing issue, the importance of reducing CO2 emissions has grown, leading to increased attention toward carbon capture, utilization, and storage (CCUS) strategies. Among these strategies, monodisperse microcapsules, produced using droplet microfluidics, have emerged as promising tools for carbon capture, offering a potential solution to mitigate CO2 emissions. However, the limited yield of microcapsules due to the inherent low flow rate in droplet microfluidics remains a challenge. In this comprehensive review, the high-throughput production of carbon capture microcapsules using droplet microfluidics is focused on. Specifically, the detailed insights into microfluidic chip fabrication technologies, the microfluidic generation of emulsion droplets, along with the associated hydrodynamic considerations, and the generation of carbon capture microcapsules through droplet microfluidics are provided. This review highlights the substantial potential of droplet microfluidics as a promising technique for large-scale carbon capture microcapsule production, which could play a significant role in achieving carbon neutralization and emission reduction goals.","PeriodicalId":52353,"journal":{"name":"International Journal of Extreme Manufacturing","volume":null,"pages":null},"PeriodicalIF":16.1000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Extreme Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/2631-7990/ad339c","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

In the last three decades, carbon dioxide (CO2) emissions have shown a significant increase from various sources. To address this pressing issue, the importance of reducing CO2 emissions has grown, leading to increased attention toward carbon capture, utilization, and storage (CCUS) strategies. Among these strategies, monodisperse microcapsules, produced using droplet microfluidics, have emerged as promising tools for carbon capture, offering a potential solution to mitigate CO2 emissions. However, the limited yield of microcapsules due to the inherent low flow rate in droplet microfluidics remains a challenge. In this comprehensive review, the high-throughput production of carbon capture microcapsules using droplet microfluidics is focused on. Specifically, the detailed insights into microfluidic chip fabrication technologies, the microfluidic generation of emulsion droplets, along with the associated hydrodynamic considerations, and the generation of carbon capture microcapsules through droplet microfluidics are provided. This review highlights the substantial potential of droplet microfluidics as a promising technique for large-scale carbon capture microcapsule production, which could play a significant role in achieving carbon neutralization and emission reduction goals.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
碳捕获微胶囊的高通量微流控生产:基础、应用和前景
在过去的三十年里,各种来源的二氧化碳(CO2)排放量显著增加。为解决这一紧迫问题,减少二氧化碳排放的重要性与日俱增,碳捕集、利用和封存(CCUS)战略也因此受到越来越多的关注。在这些策略中,利用液滴微流体技术生产的单分散微胶囊已成为一种很有前景的碳捕获工具,为减少二氧化碳排放提供了一种潜在的解决方案。然而,液滴微流体技术固有的低流速导致微胶囊产量有限,这仍然是一个挑战。在这篇综述中,重点讨论了利用液滴微流控技术高通量生产碳捕集微胶囊的问题。具体来说,本综述详细介绍了微流控芯片制造技术、乳化液液滴的微流控生成、相关的流体力学考虑因素以及通过液滴微流控生成碳捕集微囊。本综述强调了液滴微流体技术作为大规模碳捕获微胶囊生产技术的巨大潜力,该技术可在实现碳中和与减排目标方面发挥重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Extreme Manufacturing
International Journal of Extreme Manufacturing Engineering-Industrial and Manufacturing Engineering
CiteScore
17.70
自引率
6.10%
发文量
83
审稿时长
12 weeks
期刊介绍: The International Journal of Extreme Manufacturing (IJEM) focuses on publishing original articles and reviews related to the science and technology of manufacturing functional devices and systems with extreme dimensions and/or extreme functionalities. The journal covers a wide range of topics, from fundamental science to cutting-edge technologies that push the boundaries of currently known theories, methods, scales, environments, and performance. Extreme manufacturing encompasses various aspects such as manufacturing with extremely high energy density, ultrahigh precision, extremely small spatial and temporal scales, extremely intensive fields, and giant systems with extreme complexity and several factors. It encompasses multiple disciplines, including machinery, materials, optics, physics, chemistry, mechanics, and mathematics. The journal is interested in theories, processes, metrology, characterization, equipment, conditions, and system integration in extreme manufacturing. Additionally, it covers materials, structures, and devices with extreme functionalities.
期刊最新文献
Design and micromanufacturing technologies of focused piezoelectric ultrasound transducers for biomedical applications Design and additive manufacturing of bionic hybrid structure inspired by cuttlebone to achieve superior mechanical properties and shape memory function Holistic and localized preparation methods for triboelectric sensors: principles, applications and perspectives Recent Advances in Fabricating High-Performance Triboelectric Nanogenerators via Modulating Surface Charge Density Laser-Forged Transformation and Encapsulation of Nanoalloys: Pioneering Robust Wideband Electromagnetic Wave Absorption and Shielding from GHz to THz
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1