Untersuchung der Blasendynamik von Flüssigkeitskavitation im Schmierfilm eines hydrodynamischen Gleitlagers

Marcus Schmidt, T. Beckmann
{"title":"Untersuchung der Blasendynamik von Flüssigkeitskavitation im Schmierfilm eines hydrodynamischen Gleitlagers","authors":"Marcus Schmidt, T. Beckmann","doi":"10.1515/teme-2023-0161","DOIUrl":null,"url":null,"abstract":"\n In hydrodynamischen Gleitlagern kann im Schmierfilm unter gewissen Betriebsbedingungen Flüssigkeitskavitation auftreten. Die Flüssigkeitskavitation lässt sich in drei Kavitationsformen unterscheiden: Pseudo-, Gas- und Dampfkavitation. Lediglich Dampfkavitation kann in Verbindung mit Werkstoffkavitation zum Schaden und später zum Ausfall eines Gleitlagers führen. Eine mögliche Ursache zur Entstehung von Dampfkavitation liegt in der Dynamik der Spaltweitenänderung einer Wellenverlagerungsbahn begründet. Die Autoren haben den erstmaligen Nachweis von implodierenden Dampfblasen im Schmierfilm eines Gleitlagers in Folge einer transienten Spaltweitenänderung vollumfänglich erbracht. Zum Erzeugen der schadensrelevanten Dampfkavitation muss eine kritische Spaltweitenänderungsgeschwindigkeit in Verbindung mit einer kritischen Exzentrizität erreicht werden. Für diese Untersuchungen steht ein Gleitlager-Modellexperiment zur Verfügung, welches kontinuierlich erweitert wurde und so dem Stand der Forschung entspricht. Es ist somit möglich, kavitierende Schmierspaltströmungen sowohl qualitativ als auch quantitativ zu untersuchen. Das Modellexperiment verfügt über eine Aktorik, die eine gezielte Steuerung der Spaltweitenänderungsgeschwindigkeit zulässt und so die Kavitationsbereiche einer realen Wellenverlagerungsbahn abbildet. Das Experiment beinhaltet ein speziell entwickeltes Fluid, dass die Reynolds- und Kavitationsähnlichkeit erfüllt. Bei der Untersuchung von Flüssigkeitskavitation muss sowohl das Verdampfen der Flüssigkeit (Dampfkavitation), das Ausgasen von Luft (Gaskavitation) sowie das Vorhandensein kleinster Luftblasen (Pseudokavitation) experimentell abgebildet werden. Dies wird u. a. durch die Verwendung von konditionierten Flüssigkeiten realisiert. Abhängig vom Betriebspunkt des Gleitlagers, treten die drei Kavitationsformen separat als auch in Verbindung miteinander auf. Das gleichzeitige Auftreten reduziert, je nach Anteil der Kavitationsformen, die Kavitationserosion, indem sie die schädigungsrelevante Dampfkavitation dämpft. Das übergeordnete Forschungsziel ist es einen Parameterbereich zu definieren, in dem eine kritische Spaltweitenänderung mit einer kritischen Exzentrizität zur „reinen“ Dampfkavitation führt. Damit soll der schadenskritische Parameterbereich eingegrenzt werden. Dies soll zukünftig bei der Auslegung und Parametrisierung von hydrodynamischen Gleitlagern helfen. Die gezeigten experimentellen Ergebnisse umfassen Hochgeschwindigkeitsaufnahmen, die eine detaillierte Analyse der Blasenbildung mit einer Geschwindigkeit von 10.000 Bildern pro Sekunde (fps) ermöglichen. Es lässt sich zusammenfassen, dass die Arbeit ein tieferes Verständnis für den Kavitationsprozess in dynamisch belasteten Gleitlagern erbringt. Das Forschungsvorhaben wurde gefördert durch die Deutsche Forschungsgemeinschaft (DFG) unter der Projektnummer 462581008.","PeriodicalId":509687,"journal":{"name":"tm - Technisches Messen","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"tm - Technisches Messen","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/teme-2023-0161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In hydrodynamischen Gleitlagern kann im Schmierfilm unter gewissen Betriebsbedingungen Flüssigkeitskavitation auftreten. Die Flüssigkeitskavitation lässt sich in drei Kavitationsformen unterscheiden: Pseudo-, Gas- und Dampfkavitation. Lediglich Dampfkavitation kann in Verbindung mit Werkstoffkavitation zum Schaden und später zum Ausfall eines Gleitlagers führen. Eine mögliche Ursache zur Entstehung von Dampfkavitation liegt in der Dynamik der Spaltweitenänderung einer Wellenverlagerungsbahn begründet. Die Autoren haben den erstmaligen Nachweis von implodierenden Dampfblasen im Schmierfilm eines Gleitlagers in Folge einer transienten Spaltweitenänderung vollumfänglich erbracht. Zum Erzeugen der schadensrelevanten Dampfkavitation muss eine kritische Spaltweitenänderungsgeschwindigkeit in Verbindung mit einer kritischen Exzentrizität erreicht werden. Für diese Untersuchungen steht ein Gleitlager-Modellexperiment zur Verfügung, welches kontinuierlich erweitert wurde und so dem Stand der Forschung entspricht. Es ist somit möglich, kavitierende Schmierspaltströmungen sowohl qualitativ als auch quantitativ zu untersuchen. Das Modellexperiment verfügt über eine Aktorik, die eine gezielte Steuerung der Spaltweitenänderungsgeschwindigkeit zulässt und so die Kavitationsbereiche einer realen Wellenverlagerungsbahn abbildet. Das Experiment beinhaltet ein speziell entwickeltes Fluid, dass die Reynolds- und Kavitationsähnlichkeit erfüllt. Bei der Untersuchung von Flüssigkeitskavitation muss sowohl das Verdampfen der Flüssigkeit (Dampfkavitation), das Ausgasen von Luft (Gaskavitation) sowie das Vorhandensein kleinster Luftblasen (Pseudokavitation) experimentell abgebildet werden. Dies wird u. a. durch die Verwendung von konditionierten Flüssigkeiten realisiert. Abhängig vom Betriebspunkt des Gleitlagers, treten die drei Kavitationsformen separat als auch in Verbindung miteinander auf. Das gleichzeitige Auftreten reduziert, je nach Anteil der Kavitationsformen, die Kavitationserosion, indem sie die schädigungsrelevante Dampfkavitation dämpft. Das übergeordnete Forschungsziel ist es einen Parameterbereich zu definieren, in dem eine kritische Spaltweitenänderung mit einer kritischen Exzentrizität zur „reinen“ Dampfkavitation führt. Damit soll der schadenskritische Parameterbereich eingegrenzt werden. Dies soll zukünftig bei der Auslegung und Parametrisierung von hydrodynamischen Gleitlagern helfen. Die gezeigten experimentellen Ergebnisse umfassen Hochgeschwindigkeitsaufnahmen, die eine detaillierte Analyse der Blasenbildung mit einer Geschwindigkeit von 10.000 Bildern pro Sekunde (fps) ermöglichen. Es lässt sich zusammenfassen, dass die Arbeit ein tieferes Verständnis für den Kavitationsprozess in dynamisch belasteten Gleitlagern erbringt. Das Forschungsvorhaben wurde gefördert durch die Deutsche Forschungsgemeinschaft (DFG) unter der Projektnummer 462581008.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
流体动力滑动轴承润滑膜中液体空化气泡动力学研究
在流体动力滑动轴承中,润滑油膜在某些工作条件下会产生液体气蚀。液体空化可分为三种形式:伪气蚀、气体气蚀和蒸汽气蚀。只有蒸汽气蚀与材料气蚀一起才会导致滑动轴承的损坏和随后的失效。蒸汽气蚀的一个可能原因是轴位移路径间隙宽度的动态变化。作者首次提供了滑动轴承润滑膜中因间隙宽度瞬时变化而产生内爆汽泡的完整证据。要产生与损害相关的蒸汽空化,必须达到临界间隙宽度变化速度和临界偏心率。滑动轴承模型实验可用于这些研究,该模型一直在不断扩展,因此符合当前的研究水平。因此,可以对空化润滑间隙流进行定性和定量研究。模型实验有一个执行器系统,可以有针对性地控制间隙宽度的变化率,从而再现真实轴位移路径的空化区域。实验包含一种专门开发的液体,符合雷诺和空化相似性。在研究液体空化时,必须通过实验对液体的蒸发(蒸汽空化)、空气的排出(气体空化)和微小气泡的存在(假空化)进行映射。除其他外,还可以通过使用调节液体来实现。根据滑动轴承的工作点,这三种形式的气蚀既可以单独发生,也可以相互结合。根据气蚀形式的比例,同时发生的气蚀可通过抑制与损害相关的蒸汽气蚀来减少气蚀侵蚀。研究的总体目标是确定一个参数范围,在这个范围内,临界间隙宽度变化和临界偏心率会导致 "纯 "汽蚀。这样做的目的是缩小损害临界参数范围。这将有助于未来流体动力滑动轴承的设计和参数化。显示的实验结果包括高速图像,能够以每秒 10,000 帧(fps)的速度详细分析气泡的形成。总之,该研究成果加深了对动态载荷滑动轴承气蚀过程的理解。该研究项目由德国研究基金会(DFG)资助,项目编号为 462581008。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Metrology for sensor networks: metrological traceability and measurement uncertainties for air quality monitoring Combination of generic novelty detection and supervised classification pipelines for industrial condition monitoring Kalibrierung und Messunsicherheitsbetrachtung eines medizinischen Bohrers mit integrierter Temperatursensorik zur Minimierung des Patientenrisikos bei minimalinvasiven Bohrungen an der lateralen Schädelbasis Der Einfluss der Messunsicherheit in der Materialprüfung – Von der Messmittelauswahl zur Konformitätsaussage am Beispiel des Zugversuchs bei erhöhter Temperatur nach DIN EN ISO 6892-2:2018-09 Tagung Messunsicherheit Erfurt 2023
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1